Metamath Proof Explorer


Theorem m2pmfzgsumcl

Description: Closure of the sum of scaled transformed matrices. (Contributed by AV, 4-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a A = N Mat R
m2pmfzmap.b B = Base A
m2pmfzmap.p P = Poly 1 R
m2pmfzmap.y Y = N Mat P
m2pmfzmap.t T = N matToPolyMat R
m2pmfzmapfsupp.x X = var 1 R
m2pmfzmapfsupp.e × ˙ = mulGrp P
m2pmfzgsumcl.m · ˙ = Y
Assertion m2pmfzgsumcl N Fin R CRing M B s 0 b B 0 s Y i = 0 s i × ˙ X · ˙ T b i Base Y

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a A = N Mat R
2 m2pmfzmap.b B = Base A
3 m2pmfzmap.p P = Poly 1 R
4 m2pmfzmap.y Y = N Mat P
5 m2pmfzmap.t T = N matToPolyMat R
6 m2pmfzmapfsupp.x X = var 1 R
7 m2pmfzmapfsupp.e × ˙ = mulGrp P
8 m2pmfzgsumcl.m · ˙ = Y
9 eqid Base Y = Base Y
10 crngring R CRing R Ring
11 3 ply1ring R Ring P Ring
12 10 11 syl R CRing P Ring
13 4 matring N Fin P Ring Y Ring
14 12 13 sylan2 N Fin R CRing Y Ring
15 ringcmn Y Ring Y CMnd
16 14 15 syl N Fin R CRing Y CMnd
17 16 3adant3 N Fin R CRing M B Y CMnd
18 17 adantr N Fin R CRing M B s 0 b B 0 s Y CMnd
19 fzfid N Fin R CRing M B s 0 b B 0 s 0 s Fin
20 simpll1 N Fin R CRing M B s 0 b B 0 s i 0 s N Fin
21 12 3ad2ant2 N Fin R CRing M B P Ring
22 21 ad2antrr N Fin R CRing M B s 0 b B 0 s i 0 s P Ring
23 10 3ad2ant2 N Fin R CRing M B R Ring
24 23 adantr N Fin R CRing M B s 0 b B 0 s R Ring
25 elfznn0 i 0 s i 0
26 eqid mulGrp P = mulGrp P
27 eqid Base P = Base P
28 3 6 26 7 27 ply1moncl R Ring i 0 i × ˙ X Base P
29 24 25 28 syl2an N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X Base P
30 10 anim2i N Fin R CRing N Fin R Ring
31 30 3adant3 N Fin R CRing M B N Fin R Ring
32 simpl s 0 b B 0 s s 0
33 31 32 anim12i N Fin R CRing M B s 0 b B 0 s N Fin R Ring s 0
34 df-3an N Fin R Ring s 0 N Fin R Ring s 0
35 33 34 sylibr N Fin R CRing M B s 0 b B 0 s N Fin R Ring s 0
36 simprr N Fin R CRing M B s 0 b B 0 s b B 0 s
37 36 anim1i N Fin R CRing M B s 0 b B 0 s i 0 s b B 0 s i 0 s
38 1 2 3 4 5 m2pmfzmap N Fin R Ring s 0 b B 0 s i 0 s T b i Base Y
39 35 37 38 syl2an2r N Fin R CRing M B s 0 b B 0 s i 0 s T b i Base Y
40 27 4 9 8 matvscl N Fin P Ring i × ˙ X Base P T b i Base Y i × ˙ X · ˙ T b i Base Y
41 20 22 29 39 40 syl22anc N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i Base Y
42 41 ralrimiva N Fin R CRing M B s 0 b B 0 s i 0 s i × ˙ X · ˙ T b i Base Y
43 9 18 19 42 gsummptcl N Fin R CRing M B s 0 b B 0 s Y i = 0 s i × ˙ X · ˙ T b i Base Y