Metamath Proof Explorer


Theorem m2pmfzmap

Description: The transformed values of a (finite) mapping of integers to matrices. (Contributed by AV, 4-Nov-2019)

Ref Expression
Hypotheses m2pmfzmap.a A = N Mat R
m2pmfzmap.b B = Base A
m2pmfzmap.p P = Poly 1 R
m2pmfzmap.y Y = N Mat P
m2pmfzmap.t T = N matToPolyMat R
Assertion m2pmfzmap N Fin R Ring S 0 b B 0 S I 0 S T b I Base Y

Proof

Step Hyp Ref Expression
1 m2pmfzmap.a A = N Mat R
2 m2pmfzmap.b B = Base A
3 m2pmfzmap.p P = Poly 1 R
4 m2pmfzmap.y Y = N Mat P
5 m2pmfzmap.t T = N matToPolyMat R
6 simpl1 N Fin R Ring S 0 b B 0 S I 0 S N Fin
7 simpl2 N Fin R Ring S 0 b B 0 S I 0 S R Ring
8 elmapi b B 0 S b : 0 S B
9 8 ffvelrnda b B 0 S I 0 S b I B
10 9 adantl N Fin R Ring S 0 b B 0 S I 0 S b I B
11 5 1 2 3 4 mat2pmatbas N Fin R Ring b I B T b I Base Y
12 6 7 10 11 syl3anc N Fin R Ring S 0 b B 0 S I 0 S T b I Base Y