Metamath Proof Explorer


Theorem ma1repvcl

Description: Closure of the column replacement function for identity matrices. (Contributed by AV, 15-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
ma1repvcl.1 1 ˙ = 1 A
Assertion ma1repvcl R Ring N Fin C V K N 1 ˙ N matRepV R C K B

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 ma1repvcl.1 1 ˙ = 1 A
5 simpll R Ring N Fin C V K N R Ring
6 1 fveq2i 1 A = 1 N Mat R
7 4 6 eqtri 1 ˙ = 1 N Mat R
8 1 2 7 mat1bas R Ring N Fin 1 ˙ B
9 8 anim1i R Ring N Fin C V K N 1 ˙ B C V K N
10 3anass 1 ˙ B C V K N 1 ˙ B C V K N
11 9 10 sylibr R Ring N Fin C V K N 1 ˙ B C V K N
12 1 2 3 marepvcl R Ring 1 ˙ B C V K N 1 ˙ N matRepV R C K B
13 5 11 12 syl2anc R Ring N Fin C V K N 1 ˙ N matRepV R C K B