Metamath Proof Explorer


Theorem ma1repveval

Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
ma1repvcl.1 1 ˙ = 1 A
mulmarep1el.0 0 ˙ = 0 R
mulmarep1el.e E = 1 ˙ N matRepV R C K
Assertion ma1repveval R Ring M B C V K N I N J N I E J = if J = K C I if J = I 1 R 0 ˙

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 ma1repvcl.1 1 ˙ = 1 A
5 mulmarep1el.0 0 ˙ = 0 R
6 mulmarep1el.e E = 1 ˙ N matRepV R C K
7 1 2 matrcl M B N Fin R V
8 7 simpld M B N Fin
9 1 fveq2i 1 A = 1 N Mat R
10 4 9 eqtri 1 ˙ = 1 N Mat R
11 1 2 10 mat1bas R Ring N Fin 1 ˙ B
12 11 expcom N Fin R Ring 1 ˙ B
13 8 12 syl M B R Ring 1 ˙ B
14 13 3ad2ant1 M B C V K N R Ring 1 ˙ B
15 14 impcom R Ring M B C V K N 1 ˙ B
16 simpr2 R Ring M B C V K N C V
17 simpr3 R Ring M B C V K N K N
18 15 16 17 3jca R Ring M B C V K N 1 ˙ B C V K N
19 6 a1i 1 ˙ B C V K N I N J N E = 1 ˙ N matRepV R C K
20 19 oveqd 1 ˙ B C V K N I N J N I E J = I 1 ˙ N matRepV R C K J
21 eqid N matRepV R = N matRepV R
22 1 2 21 3 marepveval 1 ˙ B C V K N I N J N I 1 ˙ N matRepV R C K J = if J = K C I I 1 ˙ J
23 20 22 eqtrd 1 ˙ B C V K N I N J N I E J = if J = K C I I 1 ˙ J
24 18 23 stoic3 R Ring M B C V K N I N J N I E J = if J = K C I I 1 ˙ J
25 eqid 1 R = 1 R
26 8 3ad2ant1 M B C V K N N Fin
27 26 3ad2ant2 R Ring M B C V K N I N J N N Fin
28 simp1 R Ring M B C V K N I N J N R Ring
29 simp3l R Ring M B C V K N I N J N I N
30 simp3r R Ring M B C V K N I N J N J N
31 1 25 5 27 28 29 30 4 mat1ov R Ring M B C V K N I N J N I 1 ˙ J = if I = J 1 R 0 ˙
32 eqcom I = J J = I
33 32 a1i R Ring M B C V K N I N J N I = J J = I
34 33 ifbid R Ring M B C V K N I N J N if I = J 1 R 0 ˙ = if J = I 1 R 0 ˙
35 31 34 eqtrd R Ring M B C V K N I N J N I 1 ˙ J = if J = I 1 R 0 ˙
36 35 ifeq2d R Ring M B C V K N I N J N if J = K C I I 1 ˙ J = if J = K C I if J = I 1 R 0 ˙
37 24 36 eqtrd R Ring M B C V K N I N J N I E J = if J = K C I if J = I 1 R 0 ˙