Metamath Proof Explorer


Theorem made0

Description: The only surreal made on day (/) is 0s . (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion made0 M = 0 s

Proof

Step Hyp Ref Expression
1 0elon On
2 madeval2 On M = x No | l 𝒫 M r 𝒫 M l s r l | s r = x
3 1 2 ax-mp M = x No | l 𝒫 M r 𝒫 M l s r l | s r = x
4 rabeqsn x No | l 𝒫 M r 𝒫 M l s r l | s r = x = 0 s x x No l 𝒫 M r 𝒫 M l s r l | s r = x x = 0 s
5 0elpw 𝒫 No
6 nulssgt 𝒫 No s
7 5 6 ax-mp s
8 ima0 M =
9 8 unieqi M =
10 uni0 =
11 9 10 eqtri M =
12 11 pweqi 𝒫 M = 𝒫
13 pw0 𝒫 =
14 12 13 eqtri 𝒫 M =
15 14 rexeqi l 𝒫 M r 𝒫 M l s r l | s r = x l r 𝒫 M l s r l | s r = x
16 14 rexeqi r 𝒫 M l s r l | s r = x r l s r l | s r = x
17 16 rexbii l r 𝒫 M l s r l | s r = x l r l s r l | s r = x
18 0ex V
19 breq2 r = l s r l s
20 oveq2 r = l | s r = l | s
21 20 eqeq1d r = l | s r = x l | s = x
22 19 21 anbi12d r = l s r l | s r = x l s l | s = x
23 18 22 rexsn r l s r l | s r = x l s l | s = x
24 23 rexbii l r l s r l | s r = x l l s l | s = x
25 breq1 l = l s s
26 oveq1 l = l | s = | s
27 26 eqeq1d l = l | s = x | s = x
28 25 27 anbi12d l = l s l | s = x s | s = x
29 18 28 rexsn l l s l | s = x s | s = x
30 24 29 bitri l r l s r l | s r = x s | s = x
31 15 17 30 3bitri l 𝒫 M r 𝒫 M l s r l | s r = x s | s = x
32 7 31 mpbiran l 𝒫 M r 𝒫 M l s r l | s r = x | s = x
33 df-0s 0 s = | s
34 33 eqeq1i 0 s = x | s = x
35 eqcom 0 s = x x = 0 s
36 32 34 35 3bitr2i l 𝒫 M r 𝒫 M l s r l | s r = x x = 0 s
37 36 anbi2i x No l 𝒫 M r 𝒫 M l s r l | s r = x x No x = 0 s
38 0sno 0 s No
39 eleq1 x = 0 s x No 0 s No
40 38 39 mpbiri x = 0 s x No
41 40 pm4.71ri x = 0 s x No x = 0 s
42 37 41 bitr4i x No l 𝒫 M r 𝒫 M l s r l | s r = x x = 0 s
43 4 42 mpgbir x No | l 𝒫 M r 𝒫 M l s r l | s r = x = 0 s
44 3 43 eqtri M = 0 s