Metamath Proof Explorer


Theorem madetsumid

Description: The identity summand in the Leibniz' formula of a determinant for a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses madetsumid.a A = N Mat R
madetsumid.b B = Base A
madetsumid.u U = mulGrp R
madetsumid.y Y = ℤRHom R
madetsumid.s S = pmSgn N
madetsumid.t · ˙ = R
Assertion madetsumid R CRing M B P = I N Y S P · ˙ U r N P r M r = U r N r M r

Proof

Step Hyp Ref Expression
1 madetsumid.a A = N Mat R
2 madetsumid.b B = Base A
3 madetsumid.u U = mulGrp R
4 madetsumid.y Y = ℤRHom R
5 madetsumid.s S = pmSgn N
6 madetsumid.t · ˙ = R
7 fveq2 P = I N Y S P = Y S I N
8 fveq1 P = I N P r = I N r
9 8 oveq1d P = I N P r M r = I N r M r
10 9 mpteq2dv P = I N r N P r M r = r N I N r M r
11 10 oveq2d P = I N U r N P r M r = U r N I N r M r
12 7 11 oveq12d P = I N Y S P · ˙ U r N P r M r = Y S I N · ˙ U r N I N r M r
13 12 3ad2ant3 R CRing M B P = I N Y S P · ˙ U r N P r M r = Y S I N · ˙ U r N I N r M r
14 1 2 matrcl M B N Fin R V
15 14 simpld M B N Fin
16 4 5 coeq12i Y S = ℤRHom R pmSgn N
17 16 a1i R CRing N Fin Y S = ℤRHom R pmSgn N
18 eqid SymGrp N = SymGrp N
19 18 symgid N Fin I N = 0 SymGrp N
20 19 adantl R CRing N Fin I N = 0 SymGrp N
21 17 20 fveq12d R CRing N Fin Y S I N = ℤRHom R pmSgn N 0 SymGrp N
22 crngring R CRing R Ring
23 zrhpsgnmhm R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom mulGrp R
24 3 oveq2i SymGrp N MndHom U = SymGrp N MndHom mulGrp R
25 23 24 eleqtrrdi R Ring N Fin ℤRHom R pmSgn N SymGrp N MndHom U
26 22 25 sylan R CRing N Fin ℤRHom R pmSgn N SymGrp N MndHom U
27 eqid 0 SymGrp N = 0 SymGrp N
28 eqid 1 R = 1 R
29 3 28 ringidval 1 R = 0 U
30 27 29 mhm0 ℤRHom R pmSgn N SymGrp N MndHom U ℤRHom R pmSgn N 0 SymGrp N = 1 R
31 26 30 syl R CRing N Fin ℤRHom R pmSgn N 0 SymGrp N = 1 R
32 21 31 eqtrd R CRing N Fin Y S I N = 1 R
33 fvresi r N I N r = r
34 33 adantl R CRing N Fin r N I N r = r
35 34 oveq1d R CRing N Fin r N I N r M r = r M r
36 35 mpteq2dva R CRing N Fin r N I N r M r = r N r M r
37 36 oveq2d R CRing N Fin U r N I N r M r = U r N r M r
38 32 37 oveq12d R CRing N Fin Y S I N · ˙ U r N I N r M r = 1 R · ˙ U r N r M r
39 15 38 sylan2 R CRing M B Y S I N · ˙ U r N I N r M r = 1 R · ˙ U r N r M r
40 1 2 3 matgsumcl R CRing M B U r N r M r Base R
41 eqid Base R = Base R
42 41 6 28 ringlidm R Ring U r N r M r Base R 1 R · ˙ U r N r M r = U r N r M r
43 22 40 42 syl2an2r R CRing M B 1 R · ˙ U r N r M r = U r N r M r
44 39 43 eqtrd R CRing M B Y S I N · ˙ U r N I N r M r = U r N r M r
45 44 3adant3 R CRing M B P = I N Y S I N · ˙ U r N I N r M r = U r N r M r
46 13 45 eqtrd R CRing M B P = I N Y S P · ˙ U r N P r M r = U r N r M r