Metamath Proof Explorer


Theorem madeval2

Description: Alternative characterization of the made by function. (Contributed by Scott Fenton, 17-Dec-2021)

Ref Expression
Assertion madeval2 Could not format assertion : No typesetting found for |- ( A e. On -> ( _Made ` A ) = { x e. No | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <

Proof

Step Hyp Ref Expression
1 madeval Could not format ( A e. On -> ( _Made ` A ) = ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) ) : No typesetting found for |- ( A e. On -> ( _Made ` A ) = ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) ) with typecode |-
2 scutcl a s b a | s b No
3 eleq1 a | s b = x a | s b No x No
4 3 biimpd a | s b = x a | s b No x No
5 2 4 mpan9 a s b a | s b = x x No
6 5 rexlimivw Could not format ( E. b e. ~P U. ( _Made " A ) ( a < x e. No ) : No typesetting found for |- ( E. b e. ~P U. ( _Made " A ) ( a < x e. No ) with typecode |-
7 6 rexlimivw Could not format ( E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < x e. No ) : No typesetting found for |- ( E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < x e. No ) with typecode |-
8 7 pm4.71ri Could not format ( E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < ( x e. No /\ E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < ( x e. No /\ E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
9 8 abbii Could not format { x | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
10 eleq1 y = a b y s a b s
11 breq1 y = a b y | s x a b | s x
12 10 11 anbi12d y = a b y s y | s x a b s a b | s x
13 12 rexxp Could not format ( E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. < E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( <. a , b >. e. <. |s x ) ) : No typesetting found for |- ( E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. < E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( <. a , b >. e. <. |s x ) ) with typecode |-
14 imaindm Could not format ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) = ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i dom |s ) ) : No typesetting found for |- ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) = ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i dom |s ) ) with typecode |-
15 dmscut dom | s = s
16 15 ineq2i Could not format ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i dom |s ) = ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i <
17 16 imaeq2i Could not format ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i dom |s ) ) = ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i <
18 14 17 eqtri Could not format ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) = ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i <
19 18 eleq2i Could not format ( x e. ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) <-> x e. ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < x e. ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i <
20 vex x V
21 20 elima Could not format ( x e. ( |s " ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < E. y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < E. y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i <
22 elin Could not format ( y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ y e. < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ y e. <
23 22 anbi1i Could not format ( ( y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < ( ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ y e. < ( ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ y e. <
24 anass Could not format ( ( ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ y e. < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ ( y e. < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ ( y e. <
25 23 24 bitri Could not format ( ( y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ ( y e. < ( y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) /\ ( y e. <
26 25 rexbii2 Could not format ( E. y e. ( ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) i^i < E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. < E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. <
27 19 21 26 3bitri Could not format ( x e. ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) <-> E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. < E. y e. ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ( y e. <
28 df-br a s b a b s
29 28 anbi1i a s b a | s b = x a b s a | s b = x
30 df-ov a | s b = | s a b
31 30 eqeq1i a | s b = x | s a b = x
32 scutf | s : s No
33 ffn | s : s No | s Fn s
34 32 33 ax-mp | s Fn s
35 fnbrfvb | s Fn s a b s | s a b = x a b | s x
36 34 35 mpan a b s | s a b = x a b | s x
37 31 36 bitrid a b s a | s b = x a b | s x
38 37 pm5.32i a b s a | s b = x a b s a b | s x
39 29 38 bitri a s b a | s b = x a b s a b | s x
40 39 2rexbii Could not format ( E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( <. a , b >. e. <. |s x ) ) : No typesetting found for |- ( E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( <. a , b >. e. <. |s x ) ) with typecode |-
41 13 27 40 3bitr4i Could not format ( x e. ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) <-> E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
42 41 eqabi Could not format ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) = { x | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
43 df-rab Could not format { x e. No | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
44 9 42 43 3eqtr4i Could not format ( |s " ( ~P U. ( _Made " A ) X. ~P U. ( _Made " A ) ) ) = { x e. No | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <
45 1 44 eqtrdi Could not format ( A e. On -> ( _Made ` A ) = { x e. No | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a < ( _Made ` A ) = { x e. No | E. a e. ~P U. ( _Made " A ) E. b e. ~P U. ( _Made " A ) ( a <