Metamath Proof Explorer


Theorem maducoevalmin1

Description: The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018)

Ref Expression
Hypotheses maducoevalmin1.a A = N Mat R
maducoevalmin1.b B = Base A
maducoevalmin1.d D = N maDet R
maducoevalmin1.j J = N maAdju R
Assertion maducoevalmin1 M B I N H N I J M H = D H N minMatR1 R M I

Proof

Step Hyp Ref Expression
1 maducoevalmin1.a A = N Mat R
2 maducoevalmin1.b B = Base A
3 maducoevalmin1.d D = N maDet R
4 maducoevalmin1.j J = N maAdju R
5 eqid 1 R = 1 R
6 eqid 0 R = 0 R
7 1 3 4 2 5 6 maducoeval M B I N H N I J M H = D i N , j N if i = H if j = I 1 R 0 R i M j
8 eqid N minMatR1 R = N minMatR1 R
9 1 2 8 5 6 minmar1val M B H N I N H N minMatR1 R M I = i N , j N if i = H if j = I 1 R 0 R i M j
10 9 3com23 M B I N H N H N minMatR1 R M I = i N , j N if i = H if j = I 1 R 0 R i M j
11 10 eqcomd M B I N H N i N , j N if i = H if j = I 1 R 0 R i M j = H N minMatR1 R M I
12 11 fveq2d M B I N H N D i N , j N if i = H if j = I 1 R 0 R i M j = D H N minMatR1 R M I
13 7 12 eqtrd M B I N H N I J M H = D H N minMatR1 R M I