Metamath Proof Explorer


Theorem maduf

Description: Creating the adjunct of matrices is a function from the set of matrices into the set of matrices. (Contributed by Stefan O'Rear, 11-Jul-2018)

Ref Expression
Hypotheses maduf.a A = N Mat R
maduf.j J = N maAdju R
maduf.b B = Base A
Assertion maduf R CRing J : B B

Proof

Step Hyp Ref Expression
1 maduf.a A = N Mat R
2 maduf.j J = N maAdju R
3 maduf.b B = Base A
4 eqid Base R = Base R
5 1 3 matrcl m B N Fin R V
6 5 adantl R CRing m B N Fin R V
7 6 simpld R CRing m B N Fin
8 simpl R CRing m B R CRing
9 eqid N maDet R = N maDet R
10 9 1 3 4 mdetf R CRing N maDet R : B Base R
11 10 adantr R CRing m B N maDet R : B Base R
12 11 3ad2ant1 R CRing m B i N j N N maDet R : B Base R
13 7 3ad2ant1 R CRing m B i N j N N Fin
14 simp1l R CRing m B i N j N R CRing
15 simp11l R CRing m B i N j N k N l N R CRing
16 crngring R CRing R Ring
17 eqid 1 R = 1 R
18 4 17 ringidcl R Ring 1 R Base R
19 eqid 0 R = 0 R
20 4 19 ring0cl R Ring 0 R Base R
21 18 20 ifcld R Ring if l = i 1 R 0 R Base R
22 15 16 21 3syl R CRing m B i N j N k N l N if l = i 1 R 0 R Base R
23 simp2 R CRing m B i N j N k N l N k N
24 simp3 R CRing m B i N j N k N l N l N
25 simp11r R CRing m B i N j N k N l N m B
26 1 4 3 23 24 25 matecld R CRing m B i N j N k N l N k m l Base R
27 22 26 ifcld R CRing m B i N j N k N l N if k = j if l = i 1 R 0 R k m l Base R
28 1 4 3 13 14 27 matbas2d R CRing m B i N j N k N , l N if k = j if l = i 1 R 0 R k m l B
29 12 28 ffvelrnd R CRing m B i N j N N maDet R k N , l N if k = j if l = i 1 R 0 R k m l Base R
30 1 4 3 7 8 29 matbas2d R CRing m B i N , j N N maDet R k N , l N if k = j if l = i 1 R 0 R k m l B
31 1 9 2 3 17 19 madufval J = m B i N , j N N maDet R k N , l N if k = j if l = i 1 R 0 R k m l
32 30 31 fmptd R CRing J : B B