Metamath Proof Explorer


Theorem madufval

Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018)

Ref Expression
Hypotheses madufval.a A=NMatR
madufval.d D=NmaDetR
madufval.j J=NmaAdjuR
madufval.b B=BaseA
madufval.o 1˙=1R
madufval.z 0˙=0R
Assertion madufval J=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml

Proof

Step Hyp Ref Expression
1 madufval.a A=NMatR
2 madufval.d D=NmaDetR
3 madufval.j J=NmaAdjuR
4 madufval.b B=BaseA
5 madufval.o 1˙=1R
6 madufval.z 0˙=0R
7 fvoveq1 n=NBasenMatr=BaseNMatr
8 id n=Nn=N
9 oveq1 n=NnmaDetr=NmaDetr
10 eqidd n=Nifk=jifl=i1r0rkml=ifk=jifl=i1r0rkml
11 8 8 10 mpoeq123dv n=Nkn,lnifk=jifl=i1r0rkml=kN,lNifk=jifl=i1r0rkml
12 9 11 fveq12d n=NnmaDetrkn,lnifk=jifl=i1r0rkml=NmaDetrkN,lNifk=jifl=i1r0rkml
13 8 8 12 mpoeq123dv n=Nin,jnnmaDetrkn,lnifk=jifl=i1r0rkml=iN,jNNmaDetrkN,lNifk=jifl=i1r0rkml
14 7 13 mpteq12dv n=NmBasenMatrin,jnnmaDetrkn,lnifk=jifl=i1r0rkml=mBaseNMatriN,jNNmaDetrkN,lNifk=jifl=i1r0rkml
15 oveq2 r=RNMatr=NMatR
16 15 fveq2d r=RBaseNMatr=BaseNMatR
17 oveq2 r=RNmaDetr=NmaDetR
18 fveq2 r=R1r=1R
19 fveq2 r=R0r=0R
20 18 19 ifeq12d r=Rifl=i1r0r=ifl=i1R0R
21 20 ifeq1d r=Rifk=jifl=i1r0rkml=ifk=jifl=i1R0Rkml
22 21 mpoeq3dv r=RkN,lNifk=jifl=i1r0rkml=kN,lNifk=jifl=i1R0Rkml
23 17 22 fveq12d r=RNmaDetrkN,lNifk=jifl=i1r0rkml=NmaDetRkN,lNifk=jifl=i1R0Rkml
24 23 mpoeq3dv r=RiN,jNNmaDetrkN,lNifk=jifl=i1r0rkml=iN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
25 16 24 mpteq12dv r=RmBaseNMatriN,jNNmaDetrkN,lNifk=jifl=i1r0rkml=mBaseNMatRiN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
26 df-madu maAdju=nV,rVmBasenMatrin,jnnmaDetrkn,lnifk=jifl=i1r0rkml
27 fvex BaseNMatRV
28 27 mptex mBaseNMatRiN,jNNmaDetRkN,lNifk=jifl=i1R0RkmlV
29 14 25 26 28 ovmpo NVRVNmaAdjuR=mBaseNMatRiN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
30 1 fveq2i BaseA=BaseNMatR
31 4 30 eqtri B=BaseNMatR
32 5 a1i kNlN1˙=1R
33 6 a1i kNlN0˙=0R
34 32 33 ifeq12d kNlNifl=i1˙0˙=ifl=i1R0R
35 34 ifeq1d kNlNifk=jifl=i1˙0˙kml=ifk=jifl=i1R0Rkml
36 35 mpoeq3ia kN,lNifk=jifl=i1˙0˙kml=kN,lNifk=jifl=i1R0Rkml
37 2 36 fveq12i DkN,lNifk=jifl=i1˙0˙kml=NmaDetRkN,lNifk=jifl=i1R0Rkml
38 37 a1i iNjNDkN,lNifk=jifl=i1˙0˙kml=NmaDetRkN,lNifk=jifl=i1R0Rkml
39 38 mpoeq3ia iN,jNDkN,lNifk=jifl=i1˙0˙kml=iN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
40 31 39 mpteq12i mBiN,jNDkN,lNifk=jifl=i1˙0˙kml=mBaseNMatRiN,jNNmaDetRkN,lNifk=jifl=i1R0Rkml
41 29 40 eqtr4di NVRVNmaAdjuR=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml
42 26 reldmmpo ReldommaAdju
43 42 ovprc ¬NVRVNmaAdjuR=
44 df-mat Mat=nFin,rVrfreeLModn×nsSetndxrmaMulnnn
45 44 reldmmpo ReldomMat
46 45 ovprc ¬NVRVNMatR=
47 1 46 eqtrid ¬NVRVA=
48 47 fveq2d ¬NVRVBaseA=Base
49 base0 =Base
50 48 4 49 3eqtr4g ¬NVRVB=
51 50 mpteq1d ¬NVRVmBiN,jNDkN,lNifk=jifl=i1˙0˙kml=miN,jNDkN,lNifk=jifl=i1˙0˙kml
52 mpt0 miN,jNDkN,lNifk=jifl=i1˙0˙kml=
53 51 52 eqtrdi ¬NVRVmBiN,jNDkN,lNifk=jifl=i1˙0˙kml=
54 43 53 eqtr4d ¬NVRVNmaAdjuR=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml
55 41 54 pm2.61i NmaAdjuR=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml
56 3 55 eqtri J=mBiN,jNDkN,lNifk=jifl=i1˙0˙kml