Metamath Proof Explorer


Theorem maduval

Description: Second substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018)

Ref Expression
Hypotheses madufval.a A = N Mat R
madufval.d D = N maDet R
madufval.j J = N maAdju R
madufval.b B = Base A
madufval.o 1 ˙ = 1 R
madufval.z 0 ˙ = 0 R
Assertion maduval M B J M = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l

Proof

Step Hyp Ref Expression
1 madufval.a A = N Mat R
2 madufval.d D = N maDet R
3 madufval.j J = N maAdju R
4 madufval.b B = Base A
5 madufval.o 1 ˙ = 1 R
6 madufval.z 0 ˙ = 0 R
7 1 4 matrcl M B N Fin R V
8 7 simpld M B N Fin
9 mpoexga N Fin N Fin i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l V
10 8 8 9 syl2anc M B i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l V
11 oveq m = M k m l = k M l
12 11 ifeq2d m = M if k = j if l = i 1 ˙ 0 ˙ k m l = if k = j if l = i 1 ˙ 0 ˙ k M l
13 12 mpoeq3dv m = M k N , l N if k = j if l = i 1 ˙ 0 ˙ k m l = k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
14 13 3ad2ant1 m = M i N j N k N , l N if k = j if l = i 1 ˙ 0 ˙ k m l = k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
15 14 fveq2d m = M i N j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k m l = D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
16 15 mpoeq3dva m = M i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k m l = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
17 1 2 3 4 5 6 madufval J = m B i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k m l
18 16 17 fvmptg M B i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l V J M = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l
19 10 18 mpdan M B J M = i N , j N D k N , l N if k = j if l = i 1 ˙ 0 ˙ k M l