Metamath Proof Explorer


Theorem mainerim

Description: Every equivalence relation implies equivalent coelements. (Contributed by Peter Mazsa, 20-Oct-2021)

Ref Expression
Assertion mainerim R ErALTV A CoElEqvRel A

Proof

Step Hyp Ref Expression
1 mainer2 R ErALTV A CoElEqvRel A ¬ A
2 1 simpld R ErALTV A CoElEqvRel A