Metamath Proof Explorer


Theorem mamufv

Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mamufval.f F = R maMul M N P
mamufval.b B = Base R
mamufval.t · ˙ = R
mamufval.r φ R V
mamufval.m φ M Fin
mamufval.n φ N Fin
mamufval.p φ P Fin
mamuval.x φ X B M × N
mamuval.y φ Y B N × P
mamufv.i φ I M
mamufv.k φ K P
Assertion mamufv φ I X F Y K = R j N I X j · ˙ j Y K

Proof

Step Hyp Ref Expression
1 mamufval.f F = R maMul M N P
2 mamufval.b B = Base R
3 mamufval.t · ˙ = R
4 mamufval.r φ R V
5 mamufval.m φ M Fin
6 mamufval.n φ N Fin
7 mamufval.p φ P Fin
8 mamuval.x φ X B M × N
9 mamuval.y φ Y B N × P
10 mamufv.i φ I M
11 mamufv.k φ K P
12 1 2 3 4 5 6 7 8 9 mamuval φ X F Y = i M , k P R j N i X j · ˙ j Y k
13 oveq1 i = I i X j = I X j
14 oveq2 k = K j Y k = j Y K
15 13 14 oveqan12d i = I k = K i X j · ˙ j Y k = I X j · ˙ j Y K
16 15 adantl φ i = I k = K i X j · ˙ j Y k = I X j · ˙ j Y K
17 16 mpteq2dv φ i = I k = K j N i X j · ˙ j Y k = j N I X j · ˙ j Y K
18 17 oveq2d φ i = I k = K R j N i X j · ˙ j Y k = R j N I X j · ˙ j Y K
19 ovexd φ R j N I X j · ˙ j Y K V
20 12 18 10 11 19 ovmpod φ I X F Y K = R j N I X j · ˙ j Y K