Metamath Proof Explorer


Theorem mamufval

Description: Functional value of the matrix multiplication operator. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mamufval.f F = R maMul M N P
mamufval.b B = Base R
mamufval.t · ˙ = R
mamufval.r φ R V
mamufval.m φ M Fin
mamufval.n φ N Fin
mamufval.p φ P Fin
Assertion mamufval φ F = x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k

Proof

Step Hyp Ref Expression
1 mamufval.f F = R maMul M N P
2 mamufval.b B = Base R
3 mamufval.t · ˙ = R
4 mamufval.r φ R V
5 mamufval.m φ M Fin
6 mamufval.n φ N Fin
7 mamufval.p φ P Fin
8 df-mamu maMul = r V , o V 1 st 1 st o / m 2 nd 1 st o / n 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k
9 8 a1i φ maMul = r V , o V 1 st 1 st o / m 2 nd 1 st o / n 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k
10 fvex 1 st 1 st o V
11 fvex 2 nd 1 st o V
12 fvex 2 nd o V
13 eqidd p = 2 nd o Base r m × n = Base r m × n
14 xpeq2 p = 2 nd o n × p = n × 2 nd o
15 14 oveq2d p = 2 nd o Base r n × p = Base r n × 2 nd o
16 eqidd p = 2 nd o m = m
17 id p = 2 nd o p = 2 nd o
18 eqidd p = 2 nd o r j n i x j r j y k = r j n i x j r j y k
19 16 17 18 mpoeq123dv p = 2 nd o i m , k p r j n i x j r j y k = i m , k 2 nd o r j n i x j r j y k
20 13 15 19 mpoeq123dv p = 2 nd o x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k = x Base r m × n , y Base r n × 2 nd o i m , k 2 nd o r j n i x j r j y k
21 12 20 csbie 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k = x Base r m × n , y Base r n × 2 nd o i m , k 2 nd o r j n i x j r j y k
22 xpeq12 m = 1 st 1 st o n = 2 nd 1 st o m × n = 1 st 1 st o × 2 nd 1 st o
23 22 oveq2d m = 1 st 1 st o n = 2 nd 1 st o Base r m × n = Base r 1 st 1 st o × 2 nd 1 st o
24 simpr m = 1 st 1 st o n = 2 nd 1 st o n = 2 nd 1 st o
25 24 xpeq1d m = 1 st 1 st o n = 2 nd 1 st o n × 2 nd o = 2 nd 1 st o × 2 nd o
26 25 oveq2d m = 1 st 1 st o n = 2 nd 1 st o Base r n × 2 nd o = Base r 2 nd 1 st o × 2 nd o
27 id m = 1 st 1 st o m = 1 st 1 st o
28 27 adantr m = 1 st 1 st o n = 2 nd 1 st o m = 1 st 1 st o
29 eqidd m = 1 st 1 st o n = 2 nd 1 st o 2 nd o = 2 nd o
30 eqidd m = 1 st 1 st o n = 2 nd 1 st o i x j r j y k = i x j r j y k
31 24 30 mpteq12dv m = 1 st 1 st o n = 2 nd 1 st o j n i x j r j y k = j 2 nd 1 st o i x j r j y k
32 31 oveq2d m = 1 st 1 st o n = 2 nd 1 st o r j n i x j r j y k = r j 2 nd 1 st o i x j r j y k
33 28 29 32 mpoeq123dv m = 1 st 1 st o n = 2 nd 1 st o i m , k 2 nd o r j n i x j r j y k = i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k
34 23 26 33 mpoeq123dv m = 1 st 1 st o n = 2 nd 1 st o x Base r m × n , y Base r n × 2 nd o i m , k 2 nd o r j n i x j r j y k = x Base r 1 st 1 st o × 2 nd 1 st o , y Base r 2 nd 1 st o × 2 nd o i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k
35 21 34 syl5eq m = 1 st 1 st o n = 2 nd 1 st o 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k = x Base r 1 st 1 st o × 2 nd 1 st o , y Base r 2 nd 1 st o × 2 nd o i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k
36 10 11 35 csbie2 1 st 1 st o / m 2 nd 1 st o / n 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k = x Base r 1 st 1 st o × 2 nd 1 st o , y Base r 2 nd 1 st o × 2 nd o i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k
37 simprl φ r = R o = M N P r = R
38 37 fveq2d φ r = R o = M N P Base r = Base R
39 38 2 eqtr4di φ r = R o = M N P Base r = B
40 fveq2 o = M N P 1 st o = 1 st M N P
41 40 fveq2d o = M N P 1 st 1 st o = 1 st 1 st M N P
42 41 ad2antll φ r = R o = M N P 1 st 1 st o = 1 st 1 st M N P
43 ot1stg M Fin N Fin P Fin 1 st 1 st M N P = M
44 5 6 7 43 syl3anc φ 1 st 1 st M N P = M
45 44 adantr φ r = R o = M N P 1 st 1 st M N P = M
46 42 45 eqtrd φ r = R o = M N P 1 st 1 st o = M
47 40 fveq2d o = M N P 2 nd 1 st o = 2 nd 1 st M N P
48 47 ad2antll φ r = R o = M N P 2 nd 1 st o = 2 nd 1 st M N P
49 ot2ndg M Fin N Fin P Fin 2 nd 1 st M N P = N
50 5 6 7 49 syl3anc φ 2 nd 1 st M N P = N
51 50 adantr φ r = R o = M N P 2 nd 1 st M N P = N
52 48 51 eqtrd φ r = R o = M N P 2 nd 1 st o = N
53 46 52 xpeq12d φ r = R o = M N P 1 st 1 st o × 2 nd 1 st o = M × N
54 39 53 oveq12d φ r = R o = M N P Base r 1 st 1 st o × 2 nd 1 st o = B M × N
55 fveq2 o = M N P 2 nd o = 2 nd M N P
56 55 ad2antll φ r = R o = M N P 2 nd o = 2 nd M N P
57 ot3rdg P Fin 2 nd M N P = P
58 7 57 syl φ 2 nd M N P = P
59 58 adantr φ r = R o = M N P 2 nd M N P = P
60 56 59 eqtrd φ r = R o = M N P 2 nd o = P
61 52 60 xpeq12d φ r = R o = M N P 2 nd 1 st o × 2 nd o = N × P
62 39 61 oveq12d φ r = R o = M N P Base r 2 nd 1 st o × 2 nd o = B N × P
63 37 fveq2d φ r = R o = M N P r = R
64 63 3 eqtr4di φ r = R o = M N P r = · ˙
65 64 oveqd φ r = R o = M N P i x j r j y k = i x j · ˙ j y k
66 52 65 mpteq12dv φ r = R o = M N P j 2 nd 1 st o i x j r j y k = j N i x j · ˙ j y k
67 37 66 oveq12d φ r = R o = M N P r j 2 nd 1 st o i x j r j y k = R j N i x j · ˙ j y k
68 46 60 67 mpoeq123dv φ r = R o = M N P i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k = i M , k P R j N i x j · ˙ j y k
69 54 62 68 mpoeq123dv φ r = R o = M N P x Base r 1 st 1 st o × 2 nd 1 st o , y Base r 2 nd 1 st o × 2 nd o i 1 st 1 st o , k 2 nd o r j 2 nd 1 st o i x j r j y k = x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k
70 36 69 syl5eq φ r = R o = M N P 1 st 1 st o / m 2 nd 1 st o / n 2 nd o / p x Base r m × n , y Base r n × p i m , k p r j n i x j r j y k = x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k
71 4 elexd φ R V
72 otex M N P V
73 72 a1i φ M N P V
74 ovex B M × N V
75 ovex B N × P V
76 74 75 mpoex x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k V
77 76 a1i φ x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k V
78 9 70 71 73 77 ovmpod φ R maMul M N P = x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k
79 1 78 syl5eq φ F = x B M × N , y B N × P i M , k P R j N i x j · ˙ j y k