Step |
Hyp |
Ref |
Expression |
1 |
|
mamumat1cl.b |
|
2 |
|
mamumat1cl.r |
|
3 |
|
mamumat1cl.o |
|
4 |
|
mamumat1cl.z |
|
5 |
|
mamumat1cl.i |
|
6 |
|
mamumat1cl.m |
|
7 |
|
mamulid.n |
|
8 |
|
mamulid.f |
|
9 |
|
mamulid.x |
|
10 |
|
eqid |
|
11 |
2
|
adantr |
|
12 |
6
|
adantr |
|
13 |
7
|
adantr |
|
14 |
1 2 3 4 5 6
|
mamumat1cl |
|
15 |
14
|
adantr |
|
16 |
9
|
adantr |
|
17 |
|
simprl |
|
18 |
|
simprr |
|
19 |
8 1 10 11 12 12 13 15 16 17 18
|
mamufv |
|
20 |
|
ringmnd |
|
21 |
11 20
|
syl |
|
22 |
2
|
ad2antrr |
|
23 |
|
elmapi |
|
24 |
14 23
|
syl |
|
25 |
24
|
ad2antrr |
|
26 |
|
simplrl |
|
27 |
|
simpr |
|
28 |
25 26 27
|
fovrnd |
|
29 |
|
elmapi |
|
30 |
9 29
|
syl |
|
31 |
30
|
ad2antrr |
|
32 |
|
simplrr |
|
33 |
31 27 32
|
fovrnd |
|
34 |
1 10
|
ringcl |
|
35 |
22 28 33 34
|
syl3anc |
|
36 |
35
|
fmpttd |
|
37 |
26
|
3adant3 |
|
38 |
|
simp2 |
|
39 |
1 2 3 4 5 6
|
mat1comp |
|
40 |
|
equcom |
|
41 |
40
|
a1i |
|
42 |
41
|
ifbid |
|
43 |
39 42
|
eqtrd |
|
44 |
37 38 43
|
syl2anc |
|
45 |
|
ifnefalse |
|
46 |
45
|
3ad2ant3 |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
oveq1d |
|
49 |
1 10 4
|
ringlz |
|
50 |
22 33 49
|
syl2anc |
|
51 |
50
|
3adant3 |
|
52 |
48 51
|
eqtrd |
|
53 |
52 12
|
suppsssn |
|
54 |
1 4 21 12 17 36 53
|
gsumpt |
|
55 |
|
oveq2 |
|
56 |
|
oveq1 |
|
57 |
55 56
|
oveq12d |
|
58 |
|
eqid |
|
59 |
|
ovex |
|
60 |
57 58 59
|
fvmpt |
|
61 |
60
|
ad2antrl |
|
62 |
|
equequ1 |
|
63 |
62
|
ifbid |
|
64 |
|
equequ2 |
|
65 |
64
|
ifbid |
|
66 |
|
equid |
|
67 |
66
|
iftruei |
|
68 |
65 67
|
eqtrdi |
|
69 |
3
|
fvexi |
|
70 |
63 68 5 69
|
ovmpo |
|
71 |
70
|
anidms |
|
72 |
71
|
ad2antrl |
|
73 |
72
|
oveq1d |
|
74 |
30
|
fovrnda |
|
75 |
1 10 3
|
ringlidm |
|
76 |
11 74 75
|
syl2anc |
|
77 |
61 73 76
|
3eqtrd |
|
78 |
19 54 77
|
3eqtrd |
|
79 |
78
|
ralrimivva |
|
80 |
1 2 8 6 6 7 14 9
|
mamucl |
|
81 |
|
elmapi |
|
82 |
80 81
|
syl |
|
83 |
82
|
ffnd |
|
84 |
30
|
ffnd |
|
85 |
|
eqfnov2 |
|
86 |
83 84 85
|
syl2anc |
|
87 |
79 86
|
mpbird |
|