Metamath Proof Explorer


Theorem mamumat1cl

Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mamumat1cl.b B = Base R
mamumat1cl.r φ R Ring
mamumat1cl.o 1 ˙ = 1 R
mamumat1cl.z 0 ˙ = 0 R
mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
mamumat1cl.m φ M Fin
Assertion mamumat1cl φ I B M × M

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B = Base R
2 mamumat1cl.r φ R Ring
3 mamumat1cl.o 1 ˙ = 1 R
4 mamumat1cl.z 0 ˙ = 0 R
5 mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
6 mamumat1cl.m φ M Fin
7 1 3 ringidcl R Ring 1 ˙ B
8 1 4 ring0cl R Ring 0 ˙ B
9 7 8 ifcld R Ring if i = j 1 ˙ 0 ˙ B
10 2 9 syl φ if i = j 1 ˙ 0 ˙ B
11 10 adantr φ i M j M if i = j 1 ˙ 0 ˙ B
12 11 ralrimivva φ i M j M if i = j 1 ˙ 0 ˙ B
13 5 fmpo i M j M if i = j 1 ˙ 0 ˙ B I : M × M B
14 12 13 sylib φ I : M × M B
15 1 fvexi B V
16 xpfi M Fin M Fin M × M Fin
17 6 6 16 syl2anc φ M × M Fin
18 elmapg B V M × M Fin I B M × M I : M × M B
19 15 17 18 sylancr φ I B M × M I : M × M B
20 14 19 mpbird φ I B M × M