Metamath Proof Explorer


Theorem map0cor

Description: A function exists iff an empty codomain is accompanied with an empty domain. (Contributed by Zhi Wang, 1-Oct-2024)

Ref Expression
Hypotheses map0cor.1 φ A V
map0cor.2 φ B W
Assertion map0cor φ B = A = f f : A B

Proof

Step Hyp Ref Expression
1 map0cor.1 φ A V
2 map0cor.2 φ B W
3 biid A A
4 3 necon2bbii A = ¬ A
5 4 imbi2i B = A = B = ¬ A
6 imnan B = ¬ A ¬ B = A
7 5 6 bitri B = A = ¬ B = A
8 map0g B W A V B A = B = A
9 8 notbid B W A V ¬ B A = ¬ B = A
10 7 9 bitr4id B W A V B = A = ¬ B A =
11 neq0 ¬ B A = f f B A
12 11 a1i B W A V ¬ B A = f f B A
13 elmapg B W A V f B A f : A B
14 13 exbidv B W A V f f B A f f : A B
15 10 12 14 3bitrd B W A V B = A = f f : A B
16 2 1 15 syl2anc φ B = A = f f : A B