Metamath Proof Explorer


Theorem map0g

Description: Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of Suppes p. 89. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion map0g A V B W A B = A = B

Proof

Step Hyp Ref Expression
1 n0 A f f A
2 fconst6g f A B × f : B A
3 elmapg A V B W B × f A B B × f : B A
4 2 3 syl5ibr A V B W f A B × f A B
5 ne0i B × f A B A B
6 4 5 syl6 A V B W f A A B
7 6 exlimdv A V B W f f A A B
8 1 7 syl5bi A V B W A A B
9 8 necon4d A V B W A B = A =
10 f0 : A
11 feq2 B = : B A : A
12 10 11 mpbiri B = : B A
13 elmapg A V B W A B : B A
14 12 13 syl5ibr A V B W B = A B
15 ne0i A B A B
16 14 15 syl6 A V B W B = A B
17 16 necon2d A V B W A B = B
18 9 17 jcad A V B W A B = A = B
19 oveq1 A = A B = B
20 map0b B B =
21 19 20 sylan9eq A = B A B =
22 18 21 impbid1 A V B W A B = A = B