Metamath Proof Explorer


Theorem map2psrpr

Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis map2psrpr.2 C 𝑹
Assertion map2psrpr C + 𝑹 -1 𝑹 < 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A

Proof

Step Hyp Ref Expression
1 map2psrpr.2 C 𝑹
2 ltrelsr < 𝑹 𝑹 × 𝑹
3 2 brel C + 𝑹 -1 𝑹 < 𝑹 A C + 𝑹 -1 𝑹 𝑹 A 𝑹
4 3 simprd C + 𝑹 -1 𝑹 < 𝑹 A A 𝑹
5 ltasr C 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A
6 1 5 ax-mp -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A
7 pn0sr C 𝑹 C + 𝑹 C 𝑹 -1 𝑹 = 0 𝑹
8 1 7 ax-mp C + 𝑹 C 𝑹 -1 𝑹 = 0 𝑹
9 8 oveq1i C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A = 0 𝑹 + 𝑹 A
10 addasssr C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A = C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A
11 addcomsr 0 𝑹 + 𝑹 A = A + 𝑹 0 𝑹
12 9 10 11 3eqtr3i C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A = A + 𝑹 0 𝑹
13 0idsr A 𝑹 A + 𝑹 0 𝑹 = A
14 12 13 eqtrid A 𝑹 C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A = A
15 14 breq2d A 𝑹 C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 -1 𝑹 < 𝑹 A
16 6 15 syl5bb A 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 -1 𝑹 < 𝑹 A
17 m1r -1 𝑹 𝑹
18 mulclsr C 𝑹 -1 𝑹 𝑹 C 𝑹 -1 𝑹 𝑹
19 1 17 18 mp2an C 𝑹 -1 𝑹 𝑹
20 addclsr C 𝑹 -1 𝑹 𝑹 A 𝑹 C 𝑹 -1 𝑹 + 𝑹 A 𝑹
21 19 20 mpan A 𝑹 C 𝑹 -1 𝑹 + 𝑹 A 𝑹
22 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
23 breq2 y z ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A -1 𝑹 < 𝑹 y z ~ 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A
24 eqeq2 y z ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A
25 24 rexbidv y z ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 x 𝑷 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A
26 23 25 imbi12d y z ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A -1 𝑹 < 𝑹 y z ~ 𝑹 x 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A
27 df-m1r -1 𝑹 = 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹
28 27 breq1i -1 𝑹 < 𝑹 y z ~ 𝑹 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 < 𝑹 y z ~ 𝑹
29 addasspr 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y = 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y
30 29 breq2i 1 𝑷 + 𝑷 z < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y 1 𝑷 + 𝑷 z < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y
31 ltsrpr 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 < 𝑹 y z ~ 𝑹 1 𝑷 + 𝑷 z < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y
32 1pr 1 𝑷 𝑷
33 ltapr 1 𝑷 𝑷 z < 𝑷 1 𝑷 + 𝑷 y 1 𝑷 + 𝑷 z < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y
34 32 33 ax-mp z < 𝑷 1 𝑷 + 𝑷 y 1 𝑷 + 𝑷 z < 𝑷 1 𝑷 + 𝑷 1 𝑷 + 𝑷 y
35 30 31 34 3bitr4i 1 𝑷 1 𝑷 + 𝑷 1 𝑷 ~ 𝑹 < 𝑹 y z ~ 𝑹 z < 𝑷 1 𝑷 + 𝑷 y
36 28 35 bitri -1 𝑹 < 𝑹 y z ~ 𝑹 z < 𝑷 1 𝑷 + 𝑷 y
37 ltexpri z < 𝑷 1 𝑷 + 𝑷 y x 𝑷 z + 𝑷 x = 1 𝑷 + 𝑷 y
38 36 37 sylbi -1 𝑹 < 𝑹 y z ~ 𝑹 x 𝑷 z + 𝑷 x = 1 𝑷 + 𝑷 y
39 enreceq x 𝑷 1 𝑷 𝑷 y 𝑷 z 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 x + 𝑷 z = 1 𝑷 + 𝑷 y
40 32 39 mpanl2 x 𝑷 y 𝑷 z 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 x + 𝑷 z = 1 𝑷 + 𝑷 y
41 addcompr z + 𝑷 x = x + 𝑷 z
42 41 eqeq1i z + 𝑷 x = 1 𝑷 + 𝑷 y x + 𝑷 z = 1 𝑷 + 𝑷 y
43 40 42 bitr4di x 𝑷 y 𝑷 z 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 z + 𝑷 x = 1 𝑷 + 𝑷 y
44 43 ancoms y 𝑷 z 𝑷 x 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 z + 𝑷 x = 1 𝑷 + 𝑷 y
45 44 rexbidva y 𝑷 z 𝑷 x 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹 x 𝑷 z + 𝑷 x = 1 𝑷 + 𝑷 y
46 38 45 syl5ibr y 𝑷 z 𝑷 -1 𝑹 < 𝑹 y z ~ 𝑹 x 𝑷 x 1 𝑷 ~ 𝑹 = y z ~ 𝑹
47 22 26 46 ecoptocl C 𝑹 -1 𝑹 + 𝑹 A 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A
48 21 47 syl A 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A
49 oveq2 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 x 1 𝑷 ~ 𝑹 = C + 𝑹 C 𝑹 -1 𝑹 + 𝑹 A
50 49 14 sylan9eqr A 𝑹 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 x 1 𝑷 ~ 𝑹 = A
51 50 ex A 𝑹 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A C + 𝑹 x 1 𝑷 ~ 𝑹 = A
52 51 reximdv A 𝑹 x 𝑷 x 1 𝑷 ~ 𝑹 = C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A
53 48 52 syld A 𝑹 -1 𝑹 < 𝑹 C 𝑹 -1 𝑹 + 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A
54 16 53 sylbird A 𝑹 C + 𝑹 -1 𝑹 < 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A
55 4 54 mpcom C + 𝑹 -1 𝑹 < 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A
56 1 mappsrpr C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 x 1 𝑷 ~ 𝑹 x 𝑷
57 breq2 C + 𝑹 x 1 𝑷 ~ 𝑹 = A C + 𝑹 -1 𝑹 < 𝑹 C + 𝑹 x 1 𝑷 ~ 𝑹 C + 𝑹 -1 𝑹 < 𝑹 A
58 56 57 bitr3id C + 𝑹 x 1 𝑷 ~ 𝑹 = A x 𝑷 C + 𝑹 -1 𝑹 < 𝑹 A
59 58 biimpac x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A C + 𝑹 -1 𝑹 < 𝑹 A
60 59 rexlimiva x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A C + 𝑹 -1 𝑹 < 𝑹 A
61 55 60 impbii C + 𝑹 -1 𝑹 < 𝑹 A x 𝑷 C + 𝑹 x 1 𝑷 ~ 𝑹 = A