Metamath Proof Explorer


Theorem map2xp

Description: A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Assertion map2xp A V A 2 𝑜 A × A

Proof

Step Hyp Ref Expression
1 df2o3 2 𝑜 = 1 𝑜
2 df-pr 1 𝑜 = 1 𝑜
3 1 2 eqtri 2 𝑜 = 1 𝑜
4 3 oveq2i A 2 𝑜 = A 1 𝑜
5 snex V
6 5 a1i A V V
7 snex 1 𝑜 V
8 7 a1i A V 1 𝑜 V
9 id A V A V
10 1n0 1 𝑜
11 10 neii ¬ 1 𝑜 =
12 elsni 1 𝑜 1 𝑜 =
13 11 12 mto ¬ 1 𝑜
14 disjsn 1 𝑜 = ¬ 1 𝑜
15 13 14 mpbir 1 𝑜 =
16 15 a1i A V 1 𝑜 =
17 mapunen V 1 𝑜 V A V 1 𝑜 = A 1 𝑜 A × A 1 𝑜
18 6 8 9 16 17 syl31anc A V A 1 𝑜 A × A 1 𝑜
19 4 18 eqbrtrid A V A 2 𝑜 A × A 1 𝑜
20 0ex V
21 20 a1i A V V
22 9 21 mapsnend A V A A
23 1oex 1 𝑜 V
24 23 a1i A V 1 𝑜 V
25 9 24 mapsnend A V A 1 𝑜 A
26 xpen A A A 1 𝑜 A A × A 1 𝑜 A × A
27 22 25 26 syl2anc A V A × A 1 𝑜 A × A
28 entr A 2 𝑜 A × A 1 𝑜 A × A 1 𝑜 A × A A 2 𝑜 A × A
29 19 27 28 syl2anc A V A 2 𝑜 A × A