Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Utility theorems
mapcod
Next ⟩
fzosumm1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapcod
Description:
Compose two mappings.
(Contributed by
SN
, 11-Mar-2025)
Ref
Expression
Hypotheses
mapcod.1
⊢
φ
→
F
∈
A
B
mapcod.2
⊢
φ
→
G
∈
B
C
Assertion
mapcod
⊢
φ
→
F
∘
G
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
mapcod.1
⊢
φ
→
F
∈
A
B
2
mapcod.2
⊢
φ
→
G
∈
B
C
3
elmapex
⊢
F
∈
A
B
→
A
∈
V
∧
B
∈
V
4
1
3
syl
⊢
φ
→
A
∈
V
∧
B
∈
V
5
4
simpld
⊢
φ
→
A
∈
V
6
elmapex
⊢
G
∈
B
C
→
B
∈
V
∧
C
∈
V
7
2
6
syl
⊢
φ
→
B
∈
V
∧
C
∈
V
8
7
simprd
⊢
φ
→
C
∈
V
9
elmapi
⊢
F
∈
A
B
→
F
:
B
⟶
A
10
1
9
syl
⊢
φ
→
F
:
B
⟶
A
11
elmapi
⊢
G
∈
B
C
→
G
:
C
⟶
B
12
2
11
syl
⊢
φ
→
G
:
C
⟶
B
13
10
12
fcod
⊢
φ
→
F
∘
G
:
C
⟶
A
14
5
8
13
elmapdd
⊢
φ
→
F
∘
G
∈
A
C