Metamath Proof Explorer


Theorem mapcod

Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)

Ref Expression
Hypotheses mapcod.1 φ F A B
mapcod.2 φ G B C
Assertion mapcod φ F G A C

Proof

Step Hyp Ref Expression
1 mapcod.1 φ F A B
2 mapcod.2 φ G B C
3 elmapex F A B A V B V
4 1 3 syl φ A V B V
5 4 simpld φ A V
6 elmapex G B C B V C V
7 2 6 syl φ B V C V
8 7 simprd φ C V
9 elmapi F A B F : B A
10 1 9 syl φ F : B A
11 elmapi G B C G : C B
12 2 11 syl φ G : C B
13 10 12 fcod φ F G : C A
14 5 8 13 elmapdd φ F G A C