Metamath Proof Explorer


Theorem mapdcl2

Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)

Ref Expression
Hypotheses mapdlss.h H = LHyp K
mapdlss.m M = mapd K W
mapdlss.u U = DVecH K W
mapdlss.s S = LSubSp U
mapdlss.c C = LCDual K W
mapdlss.t T = LSubSp C
mapdlss.k φ K HL W H
mapdlss.r φ R S
Assertion mapdcl2 φ M R T

Proof

Step Hyp Ref Expression
1 mapdlss.h H = LHyp K
2 mapdlss.m M = mapd K W
3 mapdlss.u U = DVecH K W
4 mapdlss.s S = LSubSp U
5 mapdlss.c C = LCDual K W
6 mapdlss.t T = LSubSp C
7 mapdlss.k φ K HL W H
8 mapdlss.r φ R S
9 1 2 3 4 7 8 mapdcl φ M R ran M
10 1 2 5 6 7 mapdrn2 φ ran M = T
11 9 10 eleqtrd φ M R T