Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of Enderton p. 142. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mapdjuen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dju | |
|
2 | 1 | oveq2i | |
3 | snex | |
|
4 | simp2 | |
|
5 | xpexg | |
|
6 | 3 4 5 | sylancr | |
7 | snex | |
|
8 | simp3 | |
|
9 | xpexg | |
|
10 | 7 8 9 | sylancr | |
11 | simp1 | |
|
12 | xp01disjl | |
|
13 | 12 | a1i | |
14 | mapunen | |
|
15 | 6 10 11 13 14 | syl31anc | |
16 | 2 15 | eqbrtrid | |
17 | enrefg | |
|
18 | 11 17 | syl | |
19 | 0ex | |
|
20 | xpsnen2g | |
|
21 | 19 4 20 | sylancr | |
22 | mapen | |
|
23 | 18 21 22 | syl2anc | |
24 | 1on | |
|
25 | xpsnen2g | |
|
26 | 24 8 25 | sylancr | |
27 | mapen | |
|
28 | 18 26 27 | syl2anc | |
29 | xpen | |
|
30 | 23 28 29 | syl2anc | |
31 | entr | |
|
32 | 16 30 31 | syl2anc | |