Metamath Proof Explorer


Theorem mapdjuen

Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of Enderton p. 142. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion mapdjuen AVBWCXAB⊔︀CAB×AC

Proof

Step Hyp Ref Expression
1 df-dju B⊔︀C=×B1𝑜×C
2 1 oveq2i AB⊔︀C=A×B1𝑜×C
3 snex V
4 simp2 AVBWCXBW
5 xpexg VBW×BV
6 3 4 5 sylancr AVBWCX×BV
7 snex 1𝑜V
8 simp3 AVBWCXCX
9 xpexg 1𝑜VCX1𝑜×CV
10 7 8 9 sylancr AVBWCX1𝑜×CV
11 simp1 AVBWCXAV
12 xp01disjl ×B1𝑜×C=
13 12 a1i AVBWCX×B1𝑜×C=
14 mapunen ×BV1𝑜×CVAV×B1𝑜×C=A×B1𝑜×CA×B×A1𝑜×C
15 6 10 11 13 14 syl31anc AVBWCXA×B1𝑜×CA×B×A1𝑜×C
16 2 15 eqbrtrid AVBWCXAB⊔︀CA×B×A1𝑜×C
17 enrefg AVAA
18 11 17 syl AVBWCXAA
19 0ex V
20 xpsnen2g VBW×BB
21 19 4 20 sylancr AVBWCX×BB
22 mapen AA×BBA×BAB
23 18 21 22 syl2anc AVBWCXA×BAB
24 1on 1𝑜On
25 xpsnen2g 1𝑜OnCX1𝑜×CC
26 24 8 25 sylancr AVBWCX1𝑜×CC
27 mapen AA1𝑜×CCA1𝑜×CAC
28 18 26 27 syl2anc AVBWCXA1𝑜×CAC
29 xpen A×BABA1𝑜×CACA×B×A1𝑜×CAB×AC
30 23 28 29 syl2anc AVBWCXA×B×A1𝑜×CAB×AC
31 entr AB⊔︀CA×B×A1𝑜×CA×B×A1𝑜×CAB×ACAB⊔︀CAB×AC
32 16 30 31 syl2anc AVBWCXAB⊔︀CAB×AC