Metamath Proof Explorer


Theorem mapdom1

Description: Order-preserving property of set exponentiation. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 27-Jul-2004) (Revised by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion mapdom1 A B A C B C

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i A B B V
3 domeng B V A B x A x x B
4 2 3 syl A B A B x A x x B
5 4 ibi A B x A x x B
6 5 adantr A B C V x A x x B
7 simpl A x x B A x
8 enrefg C V C C
9 8 adantl A B C V C C
10 mapen A x C C A C x C
11 7 9 10 syl2anr A B C V A x x B A C x C
12 ovex B C V
13 2 ad2antrr A B C V A x x B B V
14 simprr A B C V A x x B x B
15 mapss B V x B x C B C
16 13 14 15 syl2anc A B C V A x x B x C B C
17 ssdomg B C V x C B C x C B C
18 12 16 17 mpsyl A B C V A x x B x C B C
19 endomtr A C x C x C B C A C B C
20 11 18 19 syl2anc A B C V A x x B A C B C
21 6 20 exlimddv A B C V A C B C
22 elmapex x A C A V C V
23 22 simprd x A C C V
24 23 con3i ¬ C V ¬ x A C
25 24 eq0rdv ¬ C V A C =
26 25 adantl A B ¬ C V A C =
27 12 0dom B C
28 26 27 eqbrtrdi A B ¬ C V A C B C
29 21 28 pm2.61dan A B A C B C