Metamath Proof Explorer


Theorem mapdom2

Description: Order-preserving property of set exponentiation. Theorem 6L(d) of Enderton p. 149. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion mapdom2 A B ¬ A = C = C A C B

Proof

Step Hyp Ref Expression
1 simpr A B C V ¬ A = C = C = C =
2 1 oveq1d A B C V ¬ A = C = C = C A = A
3 simplr A B C V ¬ A = C = C = ¬ A = C =
4 idd A B C V ¬ A = C = C = A = A =
5 4 1 jctird A B C V ¬ A = C = C = A = A = C =
6 3 5 mtod A B C V ¬ A = C = C = ¬ A =
7 6 neqned A B C V ¬ A = C = C = A
8 map0b A A =
9 7 8 syl A B C V ¬ A = C = C = A =
10 2 9 eqtrd A B C V ¬ A = C = C = C A =
11 ovex C B V
12 11 0dom C B
13 10 12 eqbrtrdi A B C V ¬ A = C = C = C A C B
14 simpll A B C V C A B
15 reldom Rel
16 15 brrelex2i A B B V
17 16 ad2antrr A B C V C B V
18 domeng B V A B x A x x B
19 17 18 syl A B C V C A B x A x x B
20 14 19 mpbid A B C V C x A x x B
21 enrefg C V C C
22 21 ad2antlr A B C V C A x x B C C
23 simprrl A B C V C A x x B A x
24 mapen C C A x C A C x
25 22 23 24 syl2anc A B C V C A x x B C A C x
26 ovexd A B C V C A x x B C x V
27 ovexd A B C V C A x x B C B x V
28 simprl A B C V C A x x B C
29 simplr A B C V C A x x B C V
30 16 ad2antrr A B C V C A x x B B V
31 30 difexd A B C V C A x x B B x V
32 map0g C V B x V C B x = C = B x
33 simpl C = B x C =
34 32 33 syl6bi C V B x V C B x = C =
35 34 necon3d C V B x V C C B x
36 29 31 35 syl2anc A B C V C A x x B C C B x
37 28 36 mpd A B C V C A x x B C B x
38 xpdom3 C x V C B x V C B x C x C x × C B x
39 26 27 37 38 syl3anc A B C V C A x x B C x C x × C B x
40 vex x V
41 40 a1i A B C V C A x x B x V
42 disjdif x B x =
43 42 a1i A B C V C A x x B x B x =
44 mapunen x V B x V C V x B x = C x B x C x × C B x
45 41 31 29 43 44 syl31anc A B C V C A x x B C x B x C x × C B x
46 45 ensymd A B C V C A x x B C x × C B x C x B x
47 simprrr A B C V C A x x B x B
48 undif x B x B x = B
49 47 48 sylib A B C V C A x x B x B x = B
50 49 oveq2d A B C V C A x x B C x B x = C B
51 46 50 breqtrd A B C V C A x x B C x × C B x C B
52 domentr C x C x × C B x C x × C B x C B C x C B
53 39 51 52 syl2anc A B C V C A x x B C x C B
54 endomtr C A C x C x C B C A C B
55 25 53 54 syl2anc A B C V C A x x B C A C B
56 55 expr A B C V C A x x B C A C B
57 56 exlimdv A B C V C x A x x B C A C B
58 20 57 mpd A B C V C C A C B
59 58 adantlr A B C V ¬ A = C = C C A C B
60 13 59 pm2.61dane A B C V ¬ A = C = C A C B
61 60 an32s A B ¬ A = C = C V C A C B
62 61 ex A B ¬ A = C = C V C A C B
63 reldmmap Rel dom 𝑚
64 63 ovprc1 ¬ C V C A =
65 64 12 eqbrtrdi ¬ C V C A C B
66 62 65 pm2.61d1 A B ¬ A = C = C A C B