Metamath Proof Explorer


Theorem mapdom3

Description: Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Assertion mapdom3 A V B W B A A B

Proof

Step Hyp Ref Expression
1 n0 B x x B
2 simp1 A V B W x B A V
3 simp3 A V B W x B x B
4 2 3 mapsnend A V B W x B A x A
5 4 ensymd A V B W x B A A x
6 simp2 A V B W x B B W
7 3 snssd A V B W x B x B
8 ssdomg B W x B x B
9 6 7 8 sylc A V B W x B x B
10 vex x V
11 10 snnz x
12 simpl x = A = x =
13 12 necon3ai x ¬ x = A =
14 11 13 ax-mp ¬ x = A =
15 mapdom2 x B ¬ x = A = A x A B
16 9 14 15 sylancl A V B W x B A x A B
17 endomtr A A x A x A B A A B
18 5 16 17 syl2anc A V B W x B A A B
19 18 3expia A V B W x B A A B
20 19 exlimdv A V B W x x B A A B
21 1 20 syl5bi A V B W B A A B
22 21 3impia A V B W B A A B