Metamath Proof Explorer


Theorem mapdpglem6

Description: Lemma for mapdpg . Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
mapdpglem4.z 0 ˙ = 0 A
mapdpglem4.g4 φ g B
mapdpglem4.z4 φ z M N Y
mapdpglem4.t4 φ t = g · ˙ G R z
mapdpglem4.xn φ X Q
mapdpglem4.g0 φ g = 0 ˙
Assertion mapdpglem6 φ t M N Y

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 mapdpglem4.z 0 ˙ = 0 A
25 mapdpglem4.g4 φ g B
26 mapdpglem4.z4 φ z M N Y
27 mapdpglem4.t4 φ t = g · ˙ G R z
28 mapdpglem4.xn φ X Q
29 mapdpglem4.g0 φ g = 0 ˙
30 1 7 8 lcdlmod φ C LMod
31 eqid LSubSp U = LSubSp U
32 eqid LSubSp C = LSubSp C
33 1 3 8 dvhlmod φ U LMod
34 4 31 6 lspsncl U LMod Y V N Y LSubSp U
35 33 10 34 syl2anc φ N Y LSubSp U
36 1 2 3 31 7 32 8 35 mapdcl2 φ M N Y LSubSp C
37 29 oveq1d φ g · ˙ G = 0 ˙ · ˙ G
38 eqid 0 C = 0 C
39 1 3 15 24 7 13 17 38 8 19 lcd0vs φ 0 ˙ · ˙ G = 0 C
40 37 39 eqtrd φ g · ˙ G = 0 C
41 38 32 lss0cl C LMod M N Y LSubSp C 0 C M N Y
42 30 36 41 syl2anc φ 0 C M N Y
43 40 42 eqeltrd φ g · ˙ G M N Y
44 18 32 lssvsubcl C LMod M N Y LSubSp C g · ˙ G M N Y z M N Y g · ˙ G R z M N Y
45 30 36 43 26 44 syl22anc φ g · ˙ G R z M N Y
46 27 45 eqeltrd φ t M N Y