Metamath Proof Explorer


Theorem mapdrval

Description: Given a dual subspace R (of functionals with closed kernels), reconstruct the subspace Q that maps to it. (Contributed by NM, 12-Mar-2015)

Ref Expression
Hypotheses mapdrval.h H = LHyp K
mapdrval.o O = ocH K W
mapdrval.m M = mapd K W
mapdrval.u U = DVecH K W
mapdrval.s S = LSubSp U
mapdrval.f F = LFnl U
mapdrval.l L = LKer U
mapdrval.d D = LDual U
mapdrval.t T = LSubSp D
mapdrval.c C = g F | O O L g = L g
mapdrval.k φ K HL W H
mapdrval.r φ R T
mapdrval.e φ R C
mapdrval.q Q = h R O L h
Assertion mapdrval φ M Q = R

Proof

Step Hyp Ref Expression
1 mapdrval.h H = LHyp K
2 mapdrval.o O = ocH K W
3 mapdrval.m M = mapd K W
4 mapdrval.u U = DVecH K W
5 mapdrval.s S = LSubSp U
6 mapdrval.f F = LFnl U
7 mapdrval.l L = LKer U
8 mapdrval.d D = LDual U
9 mapdrval.t T = LSubSp D
10 mapdrval.c C = g F | O O L g = L g
11 mapdrval.k φ K HL W H
12 mapdrval.r φ R T
13 mapdrval.e φ R C
14 mapdrval.q Q = h R O L h
15 1 2 4 5 6 7 8 9 10 14 11 12 13 lcfr φ Q S
16 1 4 5 6 7 2 3 11 15 10 mapdvalc φ M Q = f C | O L f Q
17 2fveq3 h = i O L h = O L i
18 17 cbviunv h R O L h = i R O L i
19 14 18 eqtri Q = i R O L i
20 eqid Base U = Base U
21 eqid LSAtoms U = LSAtoms U
22 eqid LSpan U = LSpan U
23 eqid 0 U = 0 U
24 eqid 0 D = 0 D
25 1 2 3 4 5 6 7 8 9 10 11 12 13 19 20 21 22 23 24 mapdrvallem3 φ f C | O L f Q = R
26 16 25 eqtrd φ M Q = R