Metamath Proof Explorer


Theorem mapdspex

Description: The map of a span equals the dual span of some vector (functional). (Contributed by NM, 15-Mar-2015)

Ref Expression
Hypotheses mapdspex.h H = LHyp K
mapdspex.m M = mapd K W
mapdspex.u U = DVecH K W
mapdspex.v V = Base U
mapdspex.n N = LSpan U
mapdspex.c C = LCDual K W
mapdspex.b B = Base C
mapdspex.j J = LSpan C
mapdspex.k φ K HL W H
mapdspex.x φ X V
Assertion mapdspex φ g B M N X = J g

Proof

Step Hyp Ref Expression
1 mapdspex.h H = LHyp K
2 mapdspex.m M = mapd K W
3 mapdspex.u U = DVecH K W
4 mapdspex.v V = Base U
5 mapdspex.n N = LSpan U
6 mapdspex.c C = LCDual K W
7 mapdspex.b B = Base C
8 mapdspex.j J = LSpan C
9 mapdspex.k φ K HL W H
10 mapdspex.x φ X V
11 1 6 9 lcdlmod φ C LMod
12 11 adantr φ N X LSAtoms U C LMod
13 eqid LSAtoms U = LSAtoms U
14 eqid LSAtoms C = LSAtoms C
15 9 adantr φ N X LSAtoms U K HL W H
16 simpr φ N X LSAtoms U N X LSAtoms U
17 1 2 3 13 6 14 15 16 mapdat φ N X LSAtoms U M N X LSAtoms C
18 7 8 14 islsati C LMod M N X LSAtoms C g B M N X = J g
19 12 17 18 syl2anc φ N X LSAtoms U g B M N X = J g
20 eqid 0 C = 0 C
21 1 6 7 20 9 lcd0vcl φ 0 C B
22 21 adantr φ N X = 0 U 0 C B
23 fveq2 N X = 0 U M N X = M 0 U
24 eqid 0 U = 0 U
25 1 2 3 24 6 20 9 mapd0 φ M 0 U = 0 C
26 20 8 lspsn0 C LMod J 0 C = 0 C
27 11 26 syl φ J 0 C = 0 C
28 25 27 eqtr4d φ M 0 U = J 0 C
29 23 28 sylan9eqr φ N X = 0 U M N X = J 0 C
30 sneq g = 0 C g = 0 C
31 30 fveq2d g = 0 C J g = J 0 C
32 31 rspceeqv 0 C B M N X = J 0 C g B M N X = J g
33 22 29 32 syl2anc φ N X = 0 U g B M N X = J g
34 1 3 9 dvhlmod φ U LMod
35 4 5 24 13 34 10 lsator0sp φ N X LSAtoms U N X = 0 U
36 19 33 35 mpjaodan φ g B M N X = J g