Step |
Hyp |
Ref |
Expression |
1 |
|
mapfien.s |
|
2 |
|
mapfien.t |
|
3 |
|
mapfien.w |
|
4 |
|
mapfien.f |
|
5 |
|
mapfien.g |
|
6 |
|
mapfien.a |
|
7 |
|
mapfien.b |
|
8 |
|
mapfien.c |
|
9 |
|
mapfien.d |
|
10 |
|
mapfien.z |
|
11 |
10
|
adantr |
|
12 |
|
f1of |
|
13 |
5 12
|
syl |
|
14 |
13 10
|
ffvelrnd |
|
15 |
3 14
|
eqeltrid |
|
16 |
15
|
adantr |
|
17 |
|
elrabi |
|
18 |
|
elmapi |
|
19 |
17 18
|
syl |
|
20 |
19 2
|
eleq2s |
|
21 |
20
|
adantl |
|
22 |
|
f1ocnv |
|
23 |
|
f1of |
|
24 |
5 22 23
|
3syl |
|
25 |
24
|
adantr |
|
26 |
|
ssidd |
|
27 |
8
|
adantr |
|
28 |
9
|
adantr |
|
29 |
|
breq1 |
|
30 |
29
|
elrab |
|
31 |
30
|
simprbi |
|
32 |
31 2
|
eleq2s |
|
33 |
32
|
adantl |
|
34 |
5 10
|
jca |
|
35 |
3
|
eqcomi |
|
36 |
34 35
|
jctir |
|
37 |
36
|
adantr |
|
38 |
|
f1ocnvfv |
|
39 |
38
|
imp |
|
40 |
37 39
|
syl |
|
41 |
11 16 21 25 26 27 28 33 40
|
fsuppcor |
|
42 |
|
f1ocnv |
|
43 |
|
f1of1 |
|
44 |
4 42 43
|
3syl |
|
45 |
44
|
adantr |
|
46 |
13 7
|
jca |
|
47 |
|
fex |
|
48 |
|
cnvexg |
|
49 |
46 47 48
|
3syl |
|
50 |
|
coexg |
|
51 |
49 50
|
sylan |
|
52 |
41 45 11 51
|
fsuppco |
|