Metamath Proof Explorer


Theorem mapfvd

Description: The value of a function that maps from B to A . (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses mapfvd.m M = A B
mapfvd.f φ F M
mapfvd.x φ X B
Assertion mapfvd φ F X A

Proof

Step Hyp Ref Expression
1 mapfvd.m M = A B
2 mapfvd.f φ F M
3 mapfvd.x φ X B
4 elmapi F A B F : B A
5 ffvelrn F : B A X B F X A
6 5 expcom X B F : B A F X A
7 3 4 6 syl2imc F A B φ F X A
8 7 1 eleq2s F M φ F X A
9 2 8 mpcom φ F X A