Metamath Proof Explorer


Theorem mapfzcons

Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M = N + 1
Assertion mapfzcons N 0 A B 1 N C B A M C B 1 M

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M = N + 1
2 simp2 N 0 A B 1 N C B A B 1 N
3 elmapex A B 1 N B V 1 N V
4 3 simpld A B 1 N B V
5 4 3ad2ant2 N 0 A B 1 N C B B V
6 ovex 1 N V
7 elmapg B V 1 N V A B 1 N A : 1 N B
8 5 6 7 sylancl N 0 A B 1 N C B A B 1 N A : 1 N B
9 2 8 mpbid N 0 A B 1 N C B A : 1 N B
10 ovex N + 1 V
11 simp3 N 0 A B 1 N C B C B
12 f1osng N + 1 V C B N + 1 C : N + 1 1-1 onto C
13 10 11 12 sylancr N 0 A B 1 N C B N + 1 C : N + 1 1-1 onto C
14 f1of N + 1 C : N + 1 1-1 onto C N + 1 C : N + 1 C
15 13 14 syl N 0 A B 1 N C B N + 1 C : N + 1 C
16 snssi C B C B
17 16 3ad2ant3 N 0 A B 1 N C B C B
18 15 17 fssd N 0 A B 1 N C B N + 1 C : N + 1 B
19 fzp1disj 1 N N + 1 =
20 19 a1i N 0 A B 1 N C B 1 N N + 1 =
21 fun A : 1 N B N + 1 C : N + 1 B 1 N N + 1 = A N + 1 C : 1 N N + 1 B B
22 9 18 20 21 syl21anc N 0 A B 1 N C B A N + 1 C : 1 N N + 1 B B
23 1z 1
24 simp1 N 0 A B 1 N C B N 0
25 nn0uz 0 = 0
26 1m1e0 1 1 = 0
27 26 fveq2i 1 1 = 0
28 25 27 eqtr4i 0 = 1 1
29 24 28 eleqtrdi N 0 A B 1 N C B N 1 1
30 fzsuc2 1 N 1 1 1 N + 1 = 1 N N + 1
31 23 29 30 sylancr N 0 A B 1 N C B 1 N + 1 = 1 N N + 1
32 31 eqcomd N 0 A B 1 N C B 1 N N + 1 = 1 N + 1
33 unidm B B = B
34 33 a1i N 0 A B 1 N C B B B = B
35 32 34 feq23d N 0 A B 1 N C B A N + 1 C : 1 N N + 1 B B A N + 1 C : 1 N + 1 B
36 22 35 mpbid N 0 A B 1 N C B A N + 1 C : 1 N + 1 B
37 ovex 1 N + 1 V
38 elmapg B V 1 N + 1 V A N + 1 C B 1 N + 1 A N + 1 C : 1 N + 1 B
39 5 37 38 sylancl N 0 A B 1 N C B A N + 1 C B 1 N + 1 A N + 1 C : 1 N + 1 B
40 36 39 mpbird N 0 A B 1 N C B A N + 1 C B 1 N + 1
41 1 opeq1i M C = N + 1 C
42 41 sneqi M C = N + 1 C
43 42 uneq2i A M C = A N + 1 C
44 1 oveq2i 1 M = 1 N + 1
45 44 oveq2i B 1 M = B 1 N + 1
46 40 43 45 3eltr4g N 0 A B 1 N C B A M C B 1 M