Metamath Proof Explorer


Theorem mapfzcons1

Description: Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M = N + 1
Assertion mapfzcons1 A B 1 N A M C 1 N = A

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M = N + 1
2 elmapi A B 1 N A : 1 N B
3 ffn A : 1 N B A Fn 1 N
4 fnresdm A Fn 1 N A 1 N = A
5 2 3 4 3syl A B 1 N A 1 N = A
6 5 uneq1d A B 1 N A 1 N M C 1 N = A M C 1 N
7 resundir A M C 1 N = A 1 N M C 1 N
8 dmres dom M C 1 N = 1 N dom M C
9 dmsnopss dom M C M
10 1 sneqi M = N + 1
11 9 10 sseqtri dom M C N + 1
12 sslin dom M C N + 1 1 N dom M C 1 N N + 1
13 11 12 ax-mp 1 N dom M C 1 N N + 1
14 fzp1disj 1 N N + 1 =
15 sseq0 1 N dom M C 1 N N + 1 1 N N + 1 = 1 N dom M C =
16 13 14 15 mp2an 1 N dom M C =
17 8 16 eqtri dom M C 1 N =
18 relres Rel M C 1 N
19 reldm0 Rel M C 1 N M C 1 N = dom M C 1 N =
20 18 19 ax-mp M C 1 N = dom M C 1 N =
21 17 20 mpbir M C 1 N =
22 21 uneq2i A M C 1 N = A
23 un0 A = A
24 22 23 eqtr2i A = A M C 1 N
25 6 7 24 3eqtr4g A B 1 N A M C 1 N = A