Metamath Proof Explorer


Theorem mapfzcons1cl

Description: A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014) (Revised by Stefan O'Rear, 5-May-2015)

Ref Expression
Hypothesis mapfzcons.1 M = N + 1
Assertion mapfzcons1cl A B 1 M A 1 N B 1 N

Proof

Step Hyp Ref Expression
1 mapfzcons.1 M = N + 1
2 fzssp1 1 N 1 N + 1
3 1 oveq2i 1 M = 1 N + 1
4 2 3 sseqtrri 1 N 1 M
5 elmapssres A B 1 M 1 N 1 M A 1 N B 1 N
6 4 5 mpan2 A B 1 M A 1 N B 1 N