Metamath Proof Explorer


Theorem mappwen

Description: Power rule for cardinal arithmetic. Theorem 11.21 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion mappwen BdomcardωB2𝑜AA𝒫BAB𝒫B

Proof

Step Hyp Ref Expression
1 simprr BdomcardωB2𝑜AA𝒫BA𝒫B
2 pw2eng Bdomcard𝒫B2𝑜B
3 2 ad2antrr BdomcardωB2𝑜AA𝒫B𝒫B2𝑜B
4 domentr A𝒫B𝒫B2𝑜BA2𝑜B
5 1 3 4 syl2anc BdomcardωB2𝑜AA𝒫BA2𝑜B
6 mapdom1 A2𝑜BAB2𝑜BB
7 5 6 syl BdomcardωB2𝑜AA𝒫BAB2𝑜BB
8 2on 2𝑜On
9 simpll BdomcardωB2𝑜AA𝒫BBdomcard
10 mapxpen 2𝑜OnBdomcardBdomcard2𝑜BB2𝑜B×B
11 8 9 9 10 mp3an2i BdomcardωB2𝑜AA𝒫B2𝑜BB2𝑜B×B
12 8 elexi 2𝑜V
13 12 enref 2𝑜2𝑜
14 infxpidm2 BdomcardωBB×BB
15 14 adantr BdomcardωB2𝑜AA𝒫BB×BB
16 mapen 2𝑜2𝑜B×BB2𝑜B×B2𝑜B
17 13 15 16 sylancr BdomcardωB2𝑜AA𝒫B2𝑜B×B2𝑜B
18 entr 2𝑜BB2𝑜B×B2𝑜B×B2𝑜B2𝑜BB2𝑜B
19 11 17 18 syl2anc BdomcardωB2𝑜AA𝒫B2𝑜BB2𝑜B
20 3 ensymd BdomcardωB2𝑜AA𝒫B2𝑜B𝒫B
21 entr 2𝑜BB2𝑜B2𝑜B𝒫B2𝑜BB𝒫B
22 19 20 21 syl2anc BdomcardωB2𝑜AA𝒫B2𝑜BB𝒫B
23 domentr AB2𝑜BB2𝑜BB𝒫BAB𝒫B
24 7 22 23 syl2anc BdomcardωB2𝑜AA𝒫BAB𝒫B
25 mapdom1 2𝑜A2𝑜BAB
26 25 ad2antrl BdomcardωB2𝑜AA𝒫B2𝑜BAB
27 endomtr 𝒫B2𝑜B2𝑜BAB𝒫BAB
28 3 26 27 syl2anc BdomcardωB2𝑜AA𝒫B𝒫BAB
29 sbth AB𝒫B𝒫BABAB𝒫B
30 24 28 29 syl2anc BdomcardωB2𝑜AA𝒫BAB𝒫B