Metamath Proof Explorer


Theorem mappwen

Description: Power rule for cardinal arithmetic. Theorem 11.21 of TakeutiZaring p. 106. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion mappwen B dom card ω B 2 𝑜 A A 𝒫 B A B 𝒫 B

Proof

Step Hyp Ref Expression
1 simprr B dom card ω B 2 𝑜 A A 𝒫 B A 𝒫 B
2 pw2eng B dom card 𝒫 B 2 𝑜 B
3 2 ad2antrr B dom card ω B 2 𝑜 A A 𝒫 B 𝒫 B 2 𝑜 B
4 domentr A 𝒫 B 𝒫 B 2 𝑜 B A 2 𝑜 B
5 1 3 4 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B A 2 𝑜 B
6 mapdom1 A 2 𝑜 B A B 2 𝑜 B B
7 5 6 syl B dom card ω B 2 𝑜 A A 𝒫 B A B 2 𝑜 B B
8 2on 2 𝑜 On
9 simpll B dom card ω B 2 𝑜 A A 𝒫 B B dom card
10 mapxpen 2 𝑜 On B dom card B dom card 2 𝑜 B B 2 𝑜 B × B
11 8 9 9 10 mp3an2i B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B B 2 𝑜 B × B
12 8 elexi 2 𝑜 V
13 12 enref 2 𝑜 2 𝑜
14 infxpidm2 B dom card ω B B × B B
15 14 adantr B dom card ω B 2 𝑜 A A 𝒫 B B × B B
16 mapen 2 𝑜 2 𝑜 B × B B 2 𝑜 B × B 2 𝑜 B
17 13 15 16 sylancr B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B × B 2 𝑜 B
18 entr 2 𝑜 B B 2 𝑜 B × B 2 𝑜 B × B 2 𝑜 B 2 𝑜 B B 2 𝑜 B
19 11 17 18 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B B 2 𝑜 B
20 3 ensymd B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B 𝒫 B
21 entr 2 𝑜 B B 2 𝑜 B 2 𝑜 B 𝒫 B 2 𝑜 B B 𝒫 B
22 19 20 21 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B B 𝒫 B
23 domentr A B 2 𝑜 B B 2 𝑜 B B 𝒫 B A B 𝒫 B
24 7 22 23 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B A B 𝒫 B
25 mapdom1 2 𝑜 A 2 𝑜 B A B
26 25 ad2antrl B dom card ω B 2 𝑜 A A 𝒫 B 2 𝑜 B A B
27 endomtr 𝒫 B 2 𝑜 B 2 𝑜 B A B 𝒫 B A B
28 3 26 27 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B 𝒫 B A B
29 sbth A B 𝒫 B 𝒫 B A B A B 𝒫 B
30 24 28 29 syl2anc B dom card ω B 2 𝑜 A A 𝒫 B A B 𝒫 B