Metamath Proof Explorer


Theorem mapsnconst

Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S = X
mapsncnv.b B V
mapsncnv.x X V
Assertion mapsnconst F B S F = S × F X

Proof

Step Hyp Ref Expression
1 mapsncnv.s S = X
2 mapsncnv.b B V
3 mapsncnv.x X V
4 snex X V
5 2 4 elmap F B X F : X B
6 3 fsn2 F : X B F X B F = X F X
7 6 simprbi F : X B F = X F X
8 1 xpeq1i S × F X = X × F X
9 fvex F X V
10 3 9 xpsn X × F X = X F X
11 8 10 eqtr2i X F X = S × F X
12 7 11 eqtrdi F : X B F = S × F X
13 5 12 sylbi F B X F = S × F X
14 1 oveq2i B S = B X
15 13 14 eleq2s F B S F = S × F X