Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The mapping operation
mapsnconst
Next ⟩
mapsncnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapsnconst
Description:
Every singleton map is a constant function.
(Contributed by
Stefan O'Rear
, 25-Mar-2015)
Ref
Expression
Hypotheses
mapsncnv.s
⊢
S
=
X
mapsncnv.b
⊢
B
∈
V
mapsncnv.x
⊢
X
∈
V
Assertion
mapsnconst
⊢
F
∈
B
S
→
F
=
S
×
F
⁡
X
Proof
Step
Hyp
Ref
Expression
1
mapsncnv.s
⊢
S
=
X
2
mapsncnv.b
⊢
B
∈
V
3
mapsncnv.x
⊢
X
∈
V
4
snex
⊢
X
∈
V
5
2
4
elmap
⊢
F
∈
B
X
↔
F
:
X
⟶
B
6
3
fsn2
⊢
F
:
X
⟶
B
↔
F
⁡
X
∈
B
∧
F
=
X
F
⁡
X
7
6
simprbi
⊢
F
:
X
⟶
B
→
F
=
X
F
⁡
X
8
1
xpeq1i
⊢
S
×
F
⁡
X
=
X
×
F
⁡
X
9
fvex
⊢
F
⁡
X
∈
V
10
3
9
xpsn
⊢
X
×
F
⁡
X
=
X
F
⁡
X
11
8
10
eqtr2i
⊢
X
F
⁡
X
=
S
×
F
⁡
X
12
7
11
eqtrdi
⊢
F
:
X
⟶
B
→
F
=
S
×
F
⁡
X
13
5
12
sylbi
⊢
F
∈
B
X
→
F
=
S
×
F
⁡
X
14
1
oveq2i
⊢
B
S
=
B
X
15
13
14
eleq2s
⊢
F
∈
B
S
→
F
=
S
×
F
⁡
X