Metamath Proof Explorer


Theorem mapsnen

Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Revised by Mario Carneiro, 15-Nov-2014) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Hypotheses mapsnen.1 A V
mapsnen.2 B V
Assertion mapsnen A B A

Proof

Step Hyp Ref Expression
1 mapsnen.1 A V
2 mapsnen.2 B V
3 id A V A V
4 2 a1i A V B V
5 3 4 mapsnend A V A B A
6 1 5 ax-mp A B A