Metamath Proof Explorer


Theorem mapsnf1o

Description: A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypothesis ixpsnf1o.f F = x A I × x
Assertion mapsnf1o A V I W F : A 1-1 onto A I

Proof

Step Hyp Ref Expression
1 ixpsnf1o.f F = x A I × x
2 1 ixpsnf1o I W F : A 1-1 onto y I A
3 2 adantl A V I W F : A 1-1 onto y I A
4 snex I V
5 ixpconstg I V A V y I A = A I
6 5 eqcomd I V A V A I = y I A
7 4 6 mpan A V A I = y I A
8 7 adantr A V I W A I = y I A
9 8 f1oeq3d A V I W F : A 1-1 onto A I F : A 1-1 onto y I A
10 3 9 mpbird A V I W F : A 1-1 onto A I