Metamath Proof Explorer


Theorem mapsnf1o2

Description: Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S = X
mapsncnv.b B V
mapsncnv.x X V
mapsncnv.f F = x B S x X
Assertion mapsnf1o2 F : B S 1-1 onto B

Proof

Step Hyp Ref Expression
1 mapsncnv.s S = X
2 mapsncnv.b B V
3 mapsncnv.x X V
4 mapsncnv.f F = x B S x X
5 fvex x X V
6 5 4 fnmpti F Fn B S
7 snex X V
8 1 7 eqeltri S V
9 snex y V
10 8 9 xpex S × y V
11 1 2 3 4 mapsncnv F -1 = y B S × y
12 10 11 fnmpti F -1 Fn B
13 dff1o4 F : B S 1-1 onto B F Fn B S F -1 Fn B
14 6 12 13 mpbir2an F : B S 1-1 onto B