Metamath Proof Explorer


Theorem mapsnf1o3

Description: Explicit bijection in the reverse of mapsnf1o2 . (Contributed by Stefan O'Rear, 24-Mar-2015)

Ref Expression
Hypotheses mapsncnv.s S = X
mapsncnv.b B V
mapsncnv.x X V
mapsnf1o3.f F = y B S × y
Assertion mapsnf1o3 F : B 1-1 onto B S

Proof

Step Hyp Ref Expression
1 mapsncnv.s S = X
2 mapsncnv.b B V
3 mapsncnv.x X V
4 mapsnf1o3.f F = y B S × y
5 eqid x B S x X = x B S x X
6 1 2 3 5 mapsnf1o2 x B S x X : B S 1-1 onto B
7 f1ocnv x B S x X : B S 1-1 onto B x B S x X -1 : B 1-1 onto B S
8 6 7 ax-mp x B S x X -1 : B 1-1 onto B S
9 1 2 3 5 mapsncnv x B S x X -1 = y B S × y
10 4 9 eqtr4i F = x B S x X -1
11 f1oeq1 F = x B S x X -1 F : B 1-1 onto B S x B S x X -1 : B 1-1 onto B S
12 10 11 ax-mp F : B 1-1 onto B S x B S x X -1 : B 1-1 onto B S
13 8 12 mpbir F : B 1-1 onto B S