Metamath Proof Explorer


Theorem mapssbi

Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mapssbi.a φ A V
mapssbi.b φ B W
mapssbi.c φ C Z
mapssbi.n φ C
Assertion mapssbi φ A B A C B C

Proof

Step Hyp Ref Expression
1 mapssbi.a φ A V
2 mapssbi.b φ B W
3 mapssbi.c φ C Z
4 mapssbi.n φ C
5 2 adantr φ A B B W
6 simpr φ A B A B
7 mapss B W A B A C B C
8 5 6 7 syl2anc φ A B A C B C
9 8 ex φ A B A C B C
10 simplr φ A C B C ¬ A B A C B C
11 nssrex ¬ A B x A ¬ x B
12 11 biimpi ¬ A B x A ¬ x B
13 12 adantl φ ¬ A B x A ¬ x B
14 fconst6g x A C × x : C A
15 14 adantl φ x A C × x : C A
16 elmapg A V C Z C × x A C C × x : C A
17 1 3 16 syl2anc φ C × x A C C × x : C A
18 17 adantr φ x A C × x A C C × x : C A
19 15 18 mpbird φ x A C × x A C
20 19 3adant3 φ x A ¬ x B C × x A C
21 3 adantr φ C × x B C C Z
22 2 adantr φ C × x B C B W
23 4 adantr φ C × x B C C
24 simpr φ C × x B C C × x B C
25 21 22 23 24 snelmap φ C × x B C x B
26 25 adantlr φ ¬ x B C × x B C x B
27 simplr φ ¬ x B C × x B C ¬ x B
28 26 27 pm2.65da φ ¬ x B ¬ C × x B C
29 28 3adant2 φ x A ¬ x B ¬ C × x B C
30 nelss C × x A C ¬ C × x B C ¬ A C B C
31 20 29 30 syl2anc φ x A ¬ x B ¬ A C B C
32 31 3exp φ x A ¬ x B ¬ A C B C
33 32 adantr φ ¬ A B x A ¬ x B ¬ A C B C
34 33 rexlimdv φ ¬ A B x A ¬ x B ¬ A C B C
35 13 34 mpd φ ¬ A B ¬ A C B C
36 35 adantlr φ A C B C ¬ A B ¬ A C B C
37 10 36 condan φ A C B C A B
38 37 ex φ A C B C A B
39 9 38 impbid φ A B A C B C