Metamath Proof Explorer


Theorem mapunen

Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of Mendelson p. 255. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion mapunen A V B W C X A B = C A B C A × C B

Proof

Step Hyp Ref Expression
1 ovex C A B V
2 1 a1i A V B W C X A B = C A B V
3 ovex C A V
4 ovex C B V
5 3 4 xpex C A × C B V
6 5 a1i A V B W C X A B = C A × C B V
7 elmapi x C A B x : A B C
8 ssun1 A A B
9 fssres x : A B C A A B x A : A C
10 7 8 9 sylancl x C A B x A : A C
11 ssun2 B A B
12 fssres x : A B C B A B x B : B C
13 7 11 12 sylancl x C A B x B : B C
14 10 13 jca x C A B x A : A C x B : B C
15 opelxp x A x B C A × C B x A C A x B C B
16 simpl3 A V B W C X A B = C X
17 simpl1 A V B W C X A B = A V
18 16 17 elmapd A V B W C X A B = x A C A x A : A C
19 simpl2 A V B W C X A B = B W
20 16 19 elmapd A V B W C X A B = x B C B x B : B C
21 18 20 anbi12d A V B W C X A B = x A C A x B C B x A : A C x B : B C
22 15 21 syl5bb A V B W C X A B = x A x B C A × C B x A : A C x B : B C
23 14 22 syl5ibr A V B W C X A B = x C A B x A x B C A × C B
24 xp1st y C A × C B 1 st y C A
25 24 adantl A V B W C X A B = y C A × C B 1 st y C A
26 elmapi 1 st y C A 1 st y : A C
27 25 26 syl A V B W C X A B = y C A × C B 1 st y : A C
28 xp2nd y C A × C B 2 nd y C B
29 28 adantl A V B W C X A B = y C A × C B 2 nd y C B
30 elmapi 2 nd y C B 2 nd y : B C
31 29 30 syl A V B W C X A B = y C A × C B 2 nd y : B C
32 simplr A V B W C X A B = y C A × C B A B =
33 27 31 32 fun2d A V B W C X A B = y C A × C B 1 st y 2 nd y : A B C
34 33 ex A V B W C X A B = y C A × C B 1 st y 2 nd y : A B C
35 unexg A V B W A B V
36 17 19 35 syl2anc A V B W C X A B = A B V
37 16 36 elmapd A V B W C X A B = 1 st y 2 nd y C A B 1 st y 2 nd y : A B C
38 34 37 sylibrd A V B W C X A B = y C A × C B 1 st y 2 nd y C A B
39 1st2nd2 y C A × C B y = 1 st y 2 nd y
40 39 ad2antll A V B W C X A B = x C A B y C A × C B y = 1 st y 2 nd y
41 27 adantrl A V B W C X A B = x C A B y C A × C B 1 st y : A C
42 31 adantrl A V B W C X A B = x C A B y C A × C B 2 nd y : B C
43 res0 1 st y =
44 res0 2 nd y =
45 43 44 eqtr4i 1 st y = 2 nd y
46 simplr A V B W C X A B = x C A B y C A × C B A B =
47 46 reseq2d A V B W C X A B = x C A B y C A × C B 1 st y A B = 1 st y
48 46 reseq2d A V B W C X A B = x C A B y C A × C B 2 nd y A B = 2 nd y
49 45 47 48 3eqtr4a A V B W C X A B = x C A B y C A × C B 1 st y A B = 2 nd y A B
50 fresaunres1 1 st y : A C 2 nd y : B C 1 st y A B = 2 nd y A B 1 st y 2 nd y A = 1 st y
51 41 42 49 50 syl3anc A V B W C X A B = x C A B y C A × C B 1 st y 2 nd y A = 1 st y
52 fresaunres2 1 st y : A C 2 nd y : B C 1 st y A B = 2 nd y A B 1 st y 2 nd y B = 2 nd y
53 41 42 49 52 syl3anc A V B W C X A B = x C A B y C A × C B 1 st y 2 nd y B = 2 nd y
54 51 53 opeq12d A V B W C X A B = x C A B y C A × C B 1 st y 2 nd y A 1 st y 2 nd y B = 1 st y 2 nd y
55 40 54 eqtr4d A V B W C X A B = x C A B y C A × C B y = 1 st y 2 nd y A 1 st y 2 nd y B
56 reseq1 x = 1 st y 2 nd y x A = 1 st y 2 nd y A
57 reseq1 x = 1 st y 2 nd y x B = 1 st y 2 nd y B
58 56 57 opeq12d x = 1 st y 2 nd y x A x B = 1 st y 2 nd y A 1 st y 2 nd y B
59 58 eqeq2d x = 1 st y 2 nd y y = x A x B y = 1 st y 2 nd y A 1 st y 2 nd y B
60 55 59 syl5ibrcom A V B W C X A B = x C A B y C A × C B x = 1 st y 2 nd y y = x A x B
61 ffn x : A B C x Fn A B
62 fnresdm x Fn A B x A B = x
63 7 61 62 3syl x C A B x A B = x
64 63 ad2antrl A V B W C X A B = x C A B y C A × C B x A B = x
65 64 eqcomd A V B W C X A B = x C A B y C A × C B x = x A B
66 vex x V
67 66 resex x A V
68 66 resex x B V
69 67 68 op1std y = x A x B 1 st y = x A
70 67 68 op2ndd y = x A x B 2 nd y = x B
71 69 70 uneq12d y = x A x B 1 st y 2 nd y = x A x B
72 resundi x A B = x A x B
73 71 72 syl6eqr y = x A x B 1 st y 2 nd y = x A B
74 73 eqeq2d y = x A x B x = 1 st y 2 nd y x = x A B
75 65 74 syl5ibrcom A V B W C X A B = x C A B y C A × C B y = x A x B x = 1 st y 2 nd y
76 60 75 impbid A V B W C X A B = x C A B y C A × C B x = 1 st y 2 nd y y = x A x B
77 76 ex A V B W C X A B = x C A B y C A × C B x = 1 st y 2 nd y y = x A x B
78 2 6 23 38 77 en3d A V B W C X A B = C A B C A × C B