Step |
Hyp |
Ref |
Expression |
1 |
|
ovexd |
|
2 |
|
ovexd |
|
3 |
|
ovexd |
|
4 |
2 3
|
xpexd |
|
5 |
|
elmapi |
|
6 |
|
ssun1 |
|
7 |
|
fssres |
|
8 |
5 6 7
|
sylancl |
|
9 |
|
ssun2 |
|
10 |
|
fssres |
|
11 |
5 9 10
|
sylancl |
|
12 |
8 11
|
jca |
|
13 |
|
opelxp |
|
14 |
|
simpl3 |
|
15 |
|
simpl1 |
|
16 |
14 15
|
elmapd |
|
17 |
|
simpl2 |
|
18 |
14 17
|
elmapd |
|
19 |
16 18
|
anbi12d |
|
20 |
13 19
|
syl5bb |
|
21 |
12 20
|
syl5ibr |
|
22 |
|
xp1st |
|
23 |
22
|
adantl |
|
24 |
|
elmapi |
|
25 |
23 24
|
syl |
|
26 |
|
xp2nd |
|
27 |
26
|
adantl |
|
28 |
|
elmapi |
|
29 |
27 28
|
syl |
|
30 |
|
simplr |
|
31 |
25 29 30
|
fun2d |
|
32 |
31
|
ex |
|
33 |
|
unexg |
|
34 |
15 17 33
|
syl2anc |
|
35 |
14 34
|
elmapd |
|
36 |
32 35
|
sylibrd |
|
37 |
|
1st2nd2 |
|
38 |
37
|
ad2antll |
|
39 |
25
|
adantrl |
|
40 |
29
|
adantrl |
|
41 |
|
res0 |
|
42 |
|
res0 |
|
43 |
41 42
|
eqtr4i |
|
44 |
|
simplr |
|
45 |
44
|
reseq2d |
|
46 |
44
|
reseq2d |
|
47 |
43 45 46
|
3eqtr4a |
|
48 |
|
fresaunres1 |
|
49 |
39 40 47 48
|
syl3anc |
|
50 |
|
fresaunres2 |
|
51 |
39 40 47 50
|
syl3anc |
|
52 |
49 51
|
opeq12d |
|
53 |
38 52
|
eqtr4d |
|
54 |
|
reseq1 |
|
55 |
|
reseq1 |
|
56 |
54 55
|
opeq12d |
|
57 |
56
|
eqeq2d |
|
58 |
53 57
|
syl5ibrcom |
|
59 |
|
ffn |
|
60 |
|
fnresdm |
|
61 |
5 59 60
|
3syl |
|
62 |
61
|
ad2antrl |
|
63 |
62
|
eqcomd |
|
64 |
|
vex |
|
65 |
64
|
resex |
|
66 |
64
|
resex |
|
67 |
65 66
|
op1std |
|
68 |
65 66
|
op2ndd |
|
69 |
67 68
|
uneq12d |
|
70 |
|
resundi |
|
71 |
69 70
|
eqtr4di |
|
72 |
71
|
eqeq2d |
|
73 |
63 72
|
syl5ibrcom |
|
74 |
58 73
|
impbid |
|
75 |
74
|
ex |
|
76 |
1 4 21 36 75
|
en3d |
|