Metamath Proof Explorer


Theorem mapval

Description: The value of set exponentiation (inference version). ( A ^m B ) is the set of all functions that map from B to A . Definition 10.24 of Kunen p. 24. (Contributed by NM, 8-Dec-2003)

Ref Expression
Hypotheses mapval.1 A V
mapval.2 B V
Assertion mapval A B = f | f : B A

Proof

Step Hyp Ref Expression
1 mapval.1 A V
2 mapval.2 B V
3 mapvalg A V B V A B = f | f : B A
4 1 2 3 mp2an A B = f | f : B A