Metamath Proof Explorer


Theorem marepvcl

Description: Closure of the column replacement function for square matrices. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A = N Mat R
marepvcl.b B = Base A
marepvcl.v V = Base R N
Assertion marepvcl R Ring M B C V K N M N matRepV R C K B

Proof

Step Hyp Ref Expression
1 marepvcl.a A = N Mat R
2 marepvcl.b B = Base A
3 marepvcl.v V = Base R N
4 eqid N matRepV R = N matRepV R
5 1 2 4 3 marepvval M B C V K N M N matRepV R C K = i N , j N if j = K C i i M j
6 5 adantl R Ring M B C V K N M N matRepV R C K = i N , j N if j = K C i i M j
7 eqid Base R = Base R
8 1 2 matrcl M B N Fin R V
9 8 simpld M B N Fin
10 9 3ad2ant1 M B C V K N N Fin
11 10 adantl R Ring M B C V K N N Fin
12 simpl R Ring M B C V K N R Ring
13 elmapi C Base R N C : N Base R
14 ffvelrn C : N Base R i N C i Base R
15 14 ex C : N Base R i N C i Base R
16 13 15 syl C Base R N i N C i Base R
17 16 3 eleq2s C V i N C i Base R
18 17 3ad2ant2 M B C V K N i N C i Base R
19 18 adantl R Ring M B C V K N i N C i Base R
20 19 imp R Ring M B C V K N i N C i Base R
21 20 3adant3 R Ring M B C V K N i N j N C i Base R
22 simp2 R Ring M B C V K N i N j N i N
23 simp3 R Ring M B C V K N i N j N j N
24 2 eleq2i M B M Base A
25 24 biimpi M B M Base A
26 25 3ad2ant1 M B C V K N M Base A
27 26 adantl R Ring M B C V K N M Base A
28 27 3ad2ant1 R Ring M B C V K N i N j N M Base A
29 1 7 matecl i N j N M Base A i M j Base R
30 22 23 28 29 syl3anc R Ring M B C V K N i N j N i M j Base R
31 21 30 ifcld R Ring M B C V K N i N j N if j = K C i i M j Base R
32 1 7 2 11 12 31 matbas2d R Ring M B C V K N i N , j N if j = K C i i M j B
33 6 32 eqeltrd R Ring M B C V K N M N matRepV R C K B