Metamath Proof Explorer


Theorem marepvfval

Description: First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses marepvfval.a A = N Mat R
marepvfval.b B = Base A
marepvfval.q Q = N matRepV R
marepvfval.v V = Base R N
Assertion marepvfval Q = m B , v V k N i N , j N if j = k v i i m j

Proof

Step Hyp Ref Expression
1 marepvfval.a A = N Mat R
2 marepvfval.b B = Base A
3 marepvfval.q Q = N matRepV R
4 marepvfval.v V = Base R N
5 2 fvexi B V
6 4 ovexi V V
7 6 a1i N V R V V V
8 mpoexga B V V V m B , v V k N i N , j N if j = k v i i m j V
9 5 7 8 sylancr N V R V m B , v V k N i N , j N if j = k v i i m j V
10 oveq12 n = N r = R n Mat r = N Mat R
11 10 1 eqtr4di n = N r = R n Mat r = A
12 11 fveq2d n = N r = R Base n Mat r = Base A
13 12 2 eqtr4di n = N r = R Base n Mat r = B
14 fveq2 r = R Base r = Base R
15 14 adantl n = N r = R Base r = Base R
16 simpl n = N r = R n = N
17 15 16 oveq12d n = N r = R Base r n = Base R N
18 17 4 eqtr4di n = N r = R Base r n = V
19 eqidd n = N r = R if j = k v i i m j = if j = k v i i m j
20 16 16 19 mpoeq123dv n = N r = R i n , j n if j = k v i i m j = i N , j N if j = k v i i m j
21 16 20 mpteq12dv n = N r = R k n i n , j n if j = k v i i m j = k N i N , j N if j = k v i i m j
22 13 18 21 mpoeq123dv n = N r = R m Base n Mat r , v Base r n k n i n , j n if j = k v i i m j = m B , v V k N i N , j N if j = k v i i m j
23 df-marepv matRepV = n V , r V m Base n Mat r , v Base r n k n i n , j n if j = k v i i m j
24 22 23 ovmpoga N V R V m B , v V k N i N , j N if j = k v i i m j V N matRepV R = m B , v V k N i N , j N if j = k v i i m j
25 9 24 mpd3an3 N V R V N matRepV R = m B , v V k N i N , j N if j = k v i i m j
26 23 mpondm0 ¬ N V R V N matRepV R =
27 1 fveq2i Base A = Base N Mat R
28 2 27 eqtri B = Base N Mat R
29 matbas0pc ¬ N V R V Base N Mat R =
30 28 29 syl5eq ¬ N V R V B =
31 30 orcd ¬ N V R V B = V =
32 0mpo0 B = V = m B , v V k N i N , j N if j = k v i i m j =
33 31 32 syl ¬ N V R V m B , v V k N i N , j N if j = k v i i m j =
34 26 33 eqtr4d ¬ N V R V N matRepV R = m B , v V k N i N , j N if j = k v i i m j
35 25 34 pm2.61i N matRepV R = m B , v V k N i N , j N if j = k v i i m j
36 3 35 eqtri Q = m B , v V k N i N , j N if j = k v i i m j