Metamath Proof Explorer


Theorem marepvval0

Description: Second substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvfval.a A = N Mat R
marepvfval.b B = Base A
marepvfval.q Q = N matRepV R
marepvfval.v V = Base R N
Assertion marepvval0 M B C V M Q C = k N i N , j N if j = k C i i M j

Proof

Step Hyp Ref Expression
1 marepvfval.a A = N Mat R
2 marepvfval.b B = Base A
3 marepvfval.q Q = N matRepV R
4 marepvfval.v V = Base R N
5 1 2 matrcl M B N Fin R V
6 5 simpld M B N Fin
7 6 adantr M B C V N Fin
8 7 mptexd M B C V k N i N , j N if j = k C i i M j V
9 fveq1 c = C c i = C i
10 9 adantl m = M c = C c i = C i
11 oveq m = M i m j = i M j
12 11 adantr m = M c = C i m j = i M j
13 10 12 ifeq12d m = M c = C if j = k c i i m j = if j = k C i i M j
14 13 mpoeq3dv m = M c = C i N , j N if j = k c i i m j = i N , j N if j = k C i i M j
15 14 mpteq2dv m = M c = C k N i N , j N if j = k c i i m j = k N i N , j N if j = k C i i M j
16 1 2 3 4 marepvfval Q = m B , c V k N i N , j N if j = k c i i m j
17 15 16 ovmpoga M B C V k N i N , j N if j = k C i i M j V M Q C = k N i N , j N if j = k C i i M j
18 8 17 mpd3an3 M B C V M Q C = k N i N , j N if j = k C i i M j