Metamath Proof Explorer


Theorem marrepcl

Description: Closure of the row replacement function for square matrices. (Contributed by AV, 13-Feb-2019)

Ref Expression
Hypotheses marrepcl.a A = N Mat R
marrepcl.b B = Base A
Assertion marrepcl R Ring M B S Base R K N L N K M N matRRep R S L B

Proof

Step Hyp Ref Expression
1 marrepcl.a A = N Mat R
2 marrepcl.b B = Base A
3 eqid N matRRep R = N matRRep R
4 eqid 0 R = 0 R
5 1 2 3 4 marrepval M B S Base R K N L N K M N matRRep R S L = i N , j N if i = K if j = L S 0 R i M j
6 5 3adantl1 R Ring M B S Base R K N L N K M N matRRep R S L = i N , j N if i = K if j = L S 0 R i M j
7 eqid Base R = Base R
8 1 2 matrcl M B N Fin R V
9 8 simpld M B N Fin
10 9 3ad2ant2 R Ring M B S Base R N Fin
11 10 adantr R Ring M B S Base R K N L N N Fin
12 simpl1 R Ring M B S Base R K N L N R Ring
13 simp3 R Ring M B S Base R S Base R
14 7 4 ring0cl R Ring 0 R Base R
15 14 3ad2ant1 R Ring M B S Base R 0 R Base R
16 13 15 ifcld R Ring M B S Base R if j = L S 0 R Base R
17 16 adantr R Ring M B S Base R K N L N if j = L S 0 R Base R
18 17 3ad2ant1 R Ring M B S Base R K N L N i N j N if j = L S 0 R Base R
19 simp2 R Ring M B S Base R K N L N i N j N i N
20 simp3 R Ring M B S Base R K N L N i N j N j N
21 2 eleq2i M B M Base A
22 21 biimpi M B M Base A
23 22 3ad2ant2 R Ring M B S Base R M Base A
24 23 adantr R Ring M B S Base R K N L N M Base A
25 24 3ad2ant1 R Ring M B S Base R K N L N i N j N M Base A
26 1 7 matecl i N j N M Base A i M j Base R
27 19 20 25 26 syl3anc R Ring M B S Base R K N L N i N j N i M j Base R
28 18 27 ifcld R Ring M B S Base R K N L N i N j N if i = K if j = L S 0 R i M j Base R
29 1 7 2 11 12 28 matbas2d R Ring M B S Base R K N L N i N , j N if i = K if j = L S 0 R i M j B
30 6 29 eqeltrd R Ring M B S Base R K N L N K M N matRRep R S L B