Metamath Proof Explorer


Theorem marrepeval

Description: An entry of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A = N Mat R
marrepfval.b B = Base A
marrepfval.q Q = N matRRep R
marrepfval.z 0 ˙ = 0 R
Assertion marrepeval M B S Base R K N L N I N J N I K M Q S L J = if I = K if J = L S 0 ˙ I M J

Proof

Step Hyp Ref Expression
1 marrepfval.a A = N Mat R
2 marrepfval.b B = Base A
3 marrepfval.q Q = N matRRep R
4 marrepfval.z 0 ˙ = 0 R
5 1 2 3 4 marrepval M B S Base R K N L N K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j
6 5 3adant3 M B S Base R K N L N I N J N K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j
7 simp3l M B S Base R K N L N I N J N I N
8 simpl3r M B S Base R K N L N I N J N i = I J N
9 4 fvexi 0 ˙ V
10 ifexg S Base R 0 ˙ V if j = L S 0 ˙ V
11 9 10 mpan2 S Base R if j = L S 0 ˙ V
12 ovexd S Base R i M j V
13 11 12 ifcld S Base R if i = K if j = L S 0 ˙ i M j V
14 13 adantl M B S Base R if i = K if j = L S 0 ˙ i M j V
15 14 3ad2ant1 M B S Base R K N L N I N J N if i = K if j = L S 0 ˙ i M j V
16 15 adantr M B S Base R K N L N I N J N i = I j = J if i = K if j = L S 0 ˙ i M j V
17 eqeq1 i = I i = K I = K
18 17 adantr i = I j = J i = K I = K
19 eqeq1 j = J j = L J = L
20 19 ifbid j = J if j = L S 0 ˙ = if J = L S 0 ˙
21 20 adantl i = I j = J if j = L S 0 ˙ = if J = L S 0 ˙
22 oveq12 i = I j = J i M j = I M J
23 18 21 22 ifbieq12d i = I j = J if i = K if j = L S 0 ˙ i M j = if I = K if J = L S 0 ˙ I M J
24 23 adantl M B S Base R K N L N I N J N i = I j = J if i = K if j = L S 0 ˙ i M j = if I = K if J = L S 0 ˙ I M J
25 7 8 16 24 ovmpodv2 M B S Base R K N L N I N J N K M Q S L = i N , j N if i = K if j = L S 0 ˙ i M j I K M Q S L J = if I = K if J = L S 0 ˙ I M J
26 6 25 mpd M B S Base R K N L N I N J N I K M Q S L J = if I = K if J = L S 0 ˙ I M J