Metamath Proof Explorer


Theorem marypha1

Description: (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypotheses marypha1.a φ A Fin
marypha1.b φ B Fin
marypha1.c φ C A × B
marypha1.d φ d A d C d
Assertion marypha1 φ f 𝒫 C f : A 1-1 B

Proof

Step Hyp Ref Expression
1 marypha1.a φ A Fin
2 marypha1.b φ B Fin
3 marypha1.c φ C A × B
4 marypha1.d φ d A d C d
5 elpwi d 𝒫 A d A
6 5 4 sylan2 φ d 𝒫 A d C d
7 6 ralrimiva φ d 𝒫 A d C d
8 imaeq1 c = C c d = C d
9 8 breq2d c = C d c d d C d
10 9 ralbidv c = C d 𝒫 A d c d d 𝒫 A d C d
11 pweq c = C 𝒫 c = 𝒫 C
12 11 rexeqdv c = C f 𝒫 c f : A 1-1 V f 𝒫 C f : A 1-1 V
13 10 12 imbi12d c = C d 𝒫 A d c d f 𝒫 c f : A 1-1 V d 𝒫 A d C d f 𝒫 C f : A 1-1 V
14 xpeq2 b = B A × b = A × B
15 14 pweqd b = B 𝒫 A × b = 𝒫 A × B
16 15 raleqdv b = B c 𝒫 A × b d 𝒫 A d c d f 𝒫 c f : A 1-1 V c 𝒫 A × B d 𝒫 A d c d f 𝒫 c f : A 1-1 V
17 16 imbi2d b = B A Fin c 𝒫 A × b d 𝒫 A d c d f 𝒫 c f : A 1-1 V A Fin c 𝒫 A × B d 𝒫 A d c d f 𝒫 c f : A 1-1 V
18 marypha1lem A Fin b Fin c 𝒫 A × b d 𝒫 A d c d f 𝒫 c f : A 1-1 V
19 18 com12 b Fin A Fin c 𝒫 A × b d 𝒫 A d c d f 𝒫 c f : A 1-1 V
20 17 19 vtoclga B Fin A Fin c 𝒫 A × B d 𝒫 A d c d f 𝒫 c f : A 1-1 V
21 2 1 20 sylc φ c 𝒫 A × B d 𝒫 A d c d f 𝒫 c f : A 1-1 V
22 1 2 xpexd φ A × B V
23 22 3 sselpwd φ C 𝒫 A × B
24 13 21 23 rspcdva φ d 𝒫 A d C d f 𝒫 C f : A 1-1 V
25 7 24 mpd φ f 𝒫 C f : A 1-1 V
26 elpwi f 𝒫 C f C
27 26 3 sylan9ssr φ f 𝒫 C f A × B
28 rnss f A × B ran f ran A × B
29 27 28 syl φ f 𝒫 C ran f ran A × B
30 rnxpss ran A × B B
31 29 30 sstrdi φ f 𝒫 C ran f B
32 f1ssr f : A 1-1 V ran f B f : A 1-1 B
33 32 expcom ran f B f : A 1-1 V f : A 1-1 B
34 31 33 syl φ f 𝒫 C f : A 1-1 V f : A 1-1 B
35 34 reximdva φ f 𝒫 C f : A 1-1 V f 𝒫 C f : A 1-1 B
36 25 35 mpd φ f 𝒫 C f : A 1-1 B