Metamath Proof Explorer


Theorem marypha2lem1

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T = x A x × F x
Assertion marypha2lem1 T A × ran F

Proof

Step Hyp Ref Expression
1 marypha2lem.t T = x A x × F x
2 iunss x A x × F x A × ran F x A x × F x A × ran F
3 snssi x A x A
4 fvssunirn F x ran F
5 xpss12 x A F x ran F x × F x A × ran F
6 3 4 5 sylancl x A x × F x A × ran F
7 2 6 mprgbir x A x × F x A × ran F
8 1 7 eqsstri T A × ran F